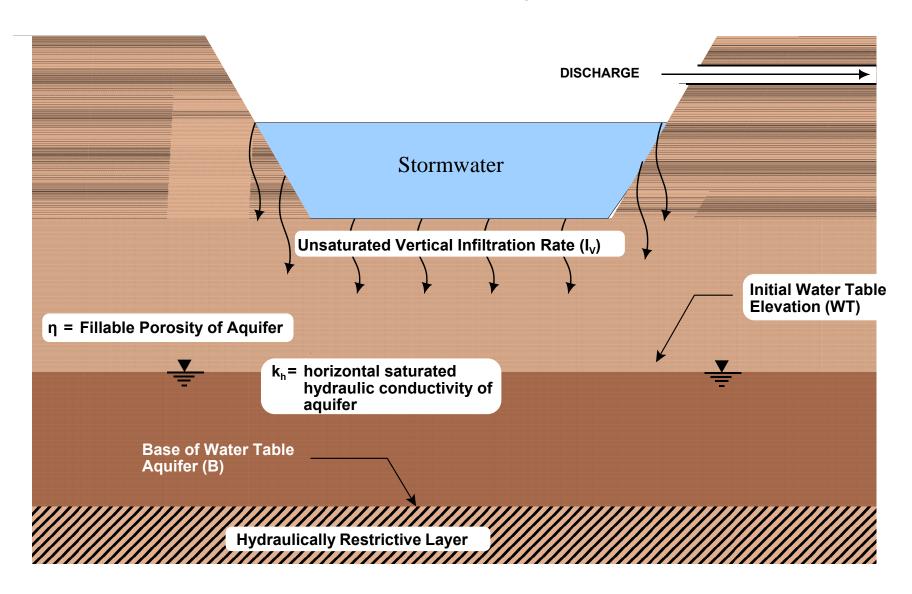
GEOTECHNICAL INVESTIGATION & ASSESSMENT TO ESTIMATE AQUIFER PARAMETERS

SJRWMD PONDS WORKSHOP

Note the word is estimate & not determine

Must appreciate the physical meaning of each aquifer parameter

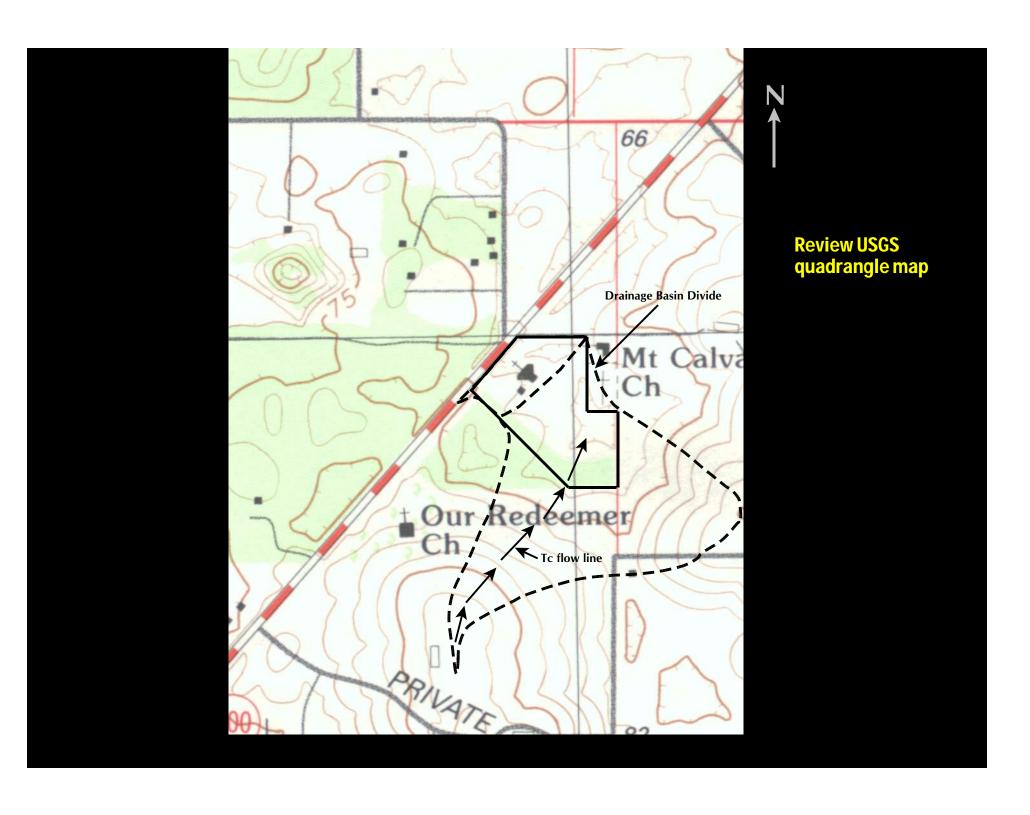

Aquifer, in this sense, does not refer to the Floridan aquifer but usually the uppermost sand aquifer into which the pond is excavated

This task should be conducted by an experienced geotechnical engineer

Two important references:

- Page 3-7 of the PONDS 2.26 User Manual
- Section 7.2 of SJRWMD SP SJ93-SP10

VISUALIZATION OF THE AQUIFER PARAMETERS



GEOTECHNICAL INVESTIGATION -STORMWATER PONDS

- Refer to page 3-7 of the PONDS 2.26 user manual. Objective of the soils report is to provide numerical values for the following aquifer parameters:
 - Seasonal high water table (ft NGVD)
 - Seasonal fluctuation of water table (ft) [only for wet pond]
 - Base of effective aquifer (ft NGVD)
 - Weighted horizontal hydraulic conductivity of effective aquifer (ft/day)
 - Fillable porosity
 - Unsaturated vertical infiltration rate (ft/day) [only for dry pond where unsaturated flow is being considered]
- Parameters should be clearly stated in one section or in a table of the soils report. It should not be buried within the verbage of the report.

GEOTECHNICAL INVESTIGATION -STORMWATER PONDS

- Review of published data to include:
 - ► USGS quad map (look at lay of the land and any closed depressions, and contributing drainage basins; good practice to field verify drainage basin divides).
 - ▶ NRCS (formerly SCS) soils map. NRCS data is now on the internet at the following address: http://www.ncg.nrcs.usda.gov/nsdi_node.html
 - Aerial photos
 - ► Subregional map of potentiometric surface of Floridan aquifer and compare to land surface elevation or water table elevation
- Map data to include:
 - Location of pond within development
 - ► Location of adjacent water bodies and wetlands and their water elevations

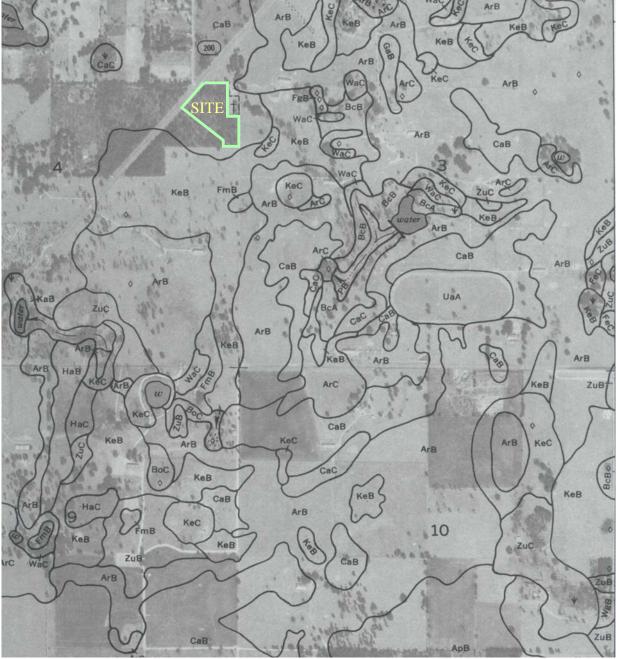


Figure 3. Soil Conservation Service (SCS) Soils Map <u>Legend</u> CaB - Candler sand, 0 to 5 percent slopes

Scale: 1" = 1320 ft.

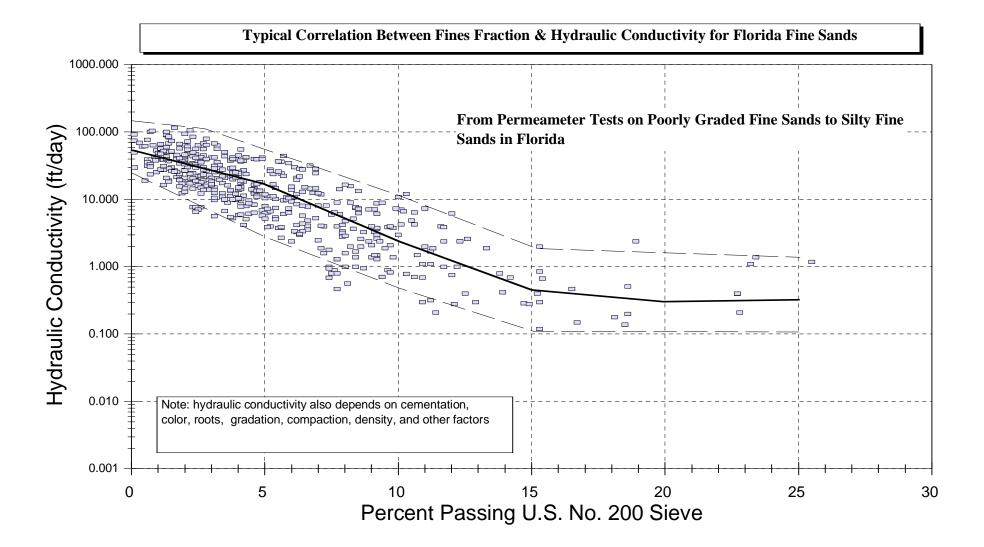
review NRCS soils map

Table 3: Key SCS Characterization Data for Arredondo Sand [ArB (0-5% slopes)]

This is a nearly level to sloping, well drained soil that occurs as both large and small areas in the upland. The water table is at a depth of more than 72 inches.

small areas in the upland. The water table is at a depth of more than 72 inches.		
Hydrologic Soil Group (HSG)		A
REPRESENTATIVE SOIL PROFILE		
Depth	Soil Color & Texture	Permeability
0 - 7 in	dark grayish brown sand	
7 - 18 in	mixed yellowish brown and dark yellowish brown sand	12 to 40 ft/day
18 - 46 in	yellowish brown sand	
46 - 65 in	strong brown sand	
65 - 70 in	strong brown loamy sand	4 4 2 10 64/4
70 - 90 in	strong brown fine sandy loam	4 to 12 ft/day

Minimum Requirements for Soils Reports


- Site-specific geotechnical data to include:
 - ▶ Location of borings within or adjacent to pond. The geotechnical engineer should select the number of pond borings based on the size of the pond. For guidance on the number of borings, refer to page 162 of SJ93-SP10.
 - ► Soil profiles with stabilized water table measurements at time of drilling
 - ▶ Results of hydraulic conductivity tests (if performed). Report should also state type of hydraulic conductivity test performed and reference the location and depth of the test
 - ► Explicit recommendations for each aquifer parameter

Estimating Aquifer Parameters

- Aquifer thickness: Refer to Section 7.2.1 of SJRWMD SJ93-SP10 for the recommended type and number of soil borings. Also refer to this section for how the soil profile should be interpreted.
- Fillable porosity: Refer to Section 7.2.4 of SJRWMD SJ93-SP10 for recommendations on how to estimate fillable porosity. Rules of thumb: 30% for HSG "A", 25% for HSG "B" & "C", and 20% for HSG "D".
- Weighted horizontal hydraulic conductivity: Refer to Section 7.2.3 of SJRWMD SJ93-SP10 for recommended test procedures and how the weighted average should be computed.
- Unsaturated vertical infiltration rate: use Double Ring Infiltrometer test (described later). Apply minimum safety factor of 2 to measured rate.

Estimating Aquifer Parameters

- Seasonal high water table: Refer to Section 7.2.2 of SJRWMD SJ93-SP10 for the recommended procedure. This technical procedure cross-references a paper I wrote on estimating the seasonal high water table. We will discuss this subject in some more detail in this workshop.
- Seasonal fluctuation of the water table: typically 3 to 4 ft in the pine flatwood soils and 6 ft or more in the sand ridge soils.

RESPONSE TO A FREQUENTLY ASKED QUESTION

SJRWMD PONDS WORKSHOP

How can the unsaturated vertical infiltration rate be greater than the weighted horizontal saturated hydraulic conductivity?

Answer:

The unsaturated vertical infiltration rate controls how fast water can enter the soil infiltrative surface and fill the unsaturated zone above the water table. This infiltration rate is usually not affected by more hydraulically restrictive soils below the water table. A minimum factor of safety of 2 is usually applied to this parameter.

The weighted horizontal hydraulic conductivity is a weighted average of the assumed thickness of the aquifer which may include clayey sands (with low permeability) in the soil profile. This parameter multiplied by the assumed aquifer thickness controls the lateral transmission of water in the soil. The recommended safety factor for this parameter is unity since it is not subject to clogging as is the unsaturated vertical infiltrative surface.

