PREDEVELOPMENT vs. POSTDEVELOPMENT RUNOFF VOLUME ANALYSIS:

A Simple Real-World Example To Demonstrate The Methodology

PRESENTED AT THE FES
STORMWATER MANAGEMENT DESIGNER'S COURSE APRIL 2, 1998

presented by:

Devo Seereeram, Ph.D., P.E.
Consulting Geotechnical Engineer
www.iag.net/~devo

PREDEVELOPMENT

POSTDEVELOPMENT - DRY BOTTOM POND

POSTDEVELOPMENT - WET BOTTOM POND

EXAMPLE PROBLEM MODEL INPUT: DRAINAGE BASIN PARAMETERS

	PARAMETER	MAGNITUDE	
			POST
Area of contributing drainage basin	ft^{2}	35,031	35,031
Area of contributing drainage basin	acre 2	0.804	0.804
Non-impervious (non-DCIA) area	ft^{2}	35,031	12,296
Curve Number (CN) for non-DCIA area (AMC I)	-	30	30
Curve Number (CN) for non-DCIA area (AMC II)		49	49
Curve Number (CN) for non-DCIA area (AMC III)		69	69
Impervious area (DCIA)	ft^{2}	0	22,735
Directly connected impervious area	$\%$	0.00%	64.90%

EXAMPLE PROBLEM MODEL INPUT: RAINFALL DATA

Month	Average for Orlando Intl Airport [1964-93] (inch)	Normal Year [1982] (inch)
January	2.23	1.72
February	2.70	1.34
March	3.53	4.85
April	2.62	6.27
May	3.40	5.29
June	6.98	6.06
July	7.83	11.81
August	6.68	5.03
September	6.74	6.96
October	3.36	0.74
November	1.88	0.53
December	1.99	1.01
TOTALS	49.94	51.61

Each simulation was run for a 365-day (1 year) period starting January 1, 1982 and ending December 31, 1982. The simulation time step was 24 hours (i.e., 1 day). The total rainfall over each $24-\mathrm{hr}$ period was treated as a single rainfall event for computing stormwater runoff.

EXAMPLE PROBLEM MODEL INPUT: STAGE-AREA DATA OF POND

Geometric Parameters for Pond			
Parameter	Unit	Magnitude	
Equivalent pond length	ft	120	
Equivalent pond width	ft	$\mathbf{2 5}$	

Stage $(\mathrm{ft} \mathrm{NGVD})$	Area Excluding Soil Voids in Side Slope $\left(\mathrm{ft}^{2}\right)$	Area Including Soil Voids in Side Slope $\left(\mathrm{ft}^{2}\right)$
101.0	0	548
104.0	756	1,152
105.0	1,484	1,735
106.0	2,738	2,738
107.0	3,876	3,876

EXAMPLE PROBLEM MODEL INPUT: POND DISCHARGE STURCTURES

Description	Parameter	Unit	Magnitude
SIDE CONTROL WEIR	Discharge elevation	ft NGVD	106.09
	Weir length	ft	1.83
	Weir coefficient	-	3.13
	Weir exponent	-	1.5
TOP WEIR	ft NGVD	106.22	
	Discharge elevation	ft	7.83
	Weir length	-	3.13
	Weir coefficient	-	1.5
	Weir exponent	ft NGVD	106.90
DROP CURB TO ENTR BLVD	Discharge elevation	ft	30
	Weir length	-	2.861
	Weir coefficient	-	1.5
	Weir exponent		

EXAMPLE PROBLEM MODEL INPUT: AQUIFER PARAMETERS

Parameter	Unit	Magnitude
Base of mobilized aquifer	ft NGVD	+99
Seasonal high water table	ft NGVD	+101
Horizontal hydraulic conductivity	ft/day	5
Fillable porosity	$\%$	20
Vertical recharge to Floridan aquifer within pond	in/yr	6
Vertical recharge to Floridan aquifer outside pond	in/yr	6

EXAMPLE PROBLEM MODEL INPUT: EVAPORATION \& EVAPOTRANSPIRATION

Month	No. of days in month	Monthly rates (inch)			Daily rates (inch)	
		Normal Rainfall	Lake Evaporation	Evapotranspiration	Lake Evaporation	Evapotranspiration
January	31	2.10	2.2	1.969	0.07097	0.06350
February	28	2.83	2.5	1.850	0.08929	0.06609
March	31	3.20	3.9	2.677	0.12581	0.08636
April	30	2.19	5.5	3.307	0.18333	0.11024
May	31	3.96	6.7	3.071	0.21613	0.09906
June	30	7.39	5.8	4.882	0.19333	0.16273
July	31	7.78	6.2	4.764	0.20000	0.15367
August	31	6.32	5.5	4.449	0.17742	0.14351
September	30	5.62	4.4	4.094	0.14667	0.13648
October	31	2.82	3.6	4.055	0.11613	0.13081
November	30	1.78	2.4	2.323	0.08000	0.07743
December	31	1.83	2.2	1.969	0.07097	0.06350
TOTALS	365	47.82	50.9	39.409		

Ready
-

RESULTS FOR THIS EXAMPLE

AVERAGE RAINFALL YEAR IS 1982

- Predevelopment runoff volume for calendar year 1982 is 4,012 cubic feet
- Postdevelopment runoff volume for calendar year 1982 is 16,171 cubic feet
- If soil permeability is doubled from 5 ft/day to 10 ft/day, the postdevelopment runoff volume for calendar year 1982 is 5,676 cubic feet
- If soil permeability is quadrupled from 5 ft/day to 20 ft/day, the postdevelopment runoff volume for calendar year 1982 is 1,563 cubic feet $(16,171 \rightarrow 5,676 \rightarrow 1,563)$

