AFIRST

ALTAMONTE – FDOT INTEGRATED REUSE & STORMWATER TREATMENT

PRESENTED BY

ED TORRES, M.S., P.E., LEED AP DEVO SEEREERAM, PH.D., P.E.

www.devoeng.com

HISTORICAL AERIAL NORTH LAKE, 1940

HISTORICAL AERIAL NORTH LAKE, 1964

HISTORICAL AERIAL NORTH LAKE, 2013

CHRONIC FLOODING OF I-4 RIGHT-OF-WAY ADJACENT TO NORTH LAKE

THE CONCEPT

- Lower the normal water level in Cranes Roost, by re-permitting pumping elevation thresholds, while retaining existing functions of water body.
 - Stormwater retention
 - Storage for reclaimed water
 - Aesthetic features
- Provide additional stormwater retention for I-4 expansion
- Enhance environmental benefits
 - Reduced discharge to Little Wekiva River
 - Less reliance on supplemental groundwater withdrawals
 - Reduced nutrient discharge
- Allows the City of Altamonte Springs to provide irrigation water to the City of Apopka

THE CONCEPT

- Cranes Roost was previously permitted as an integrated surface water and reclaimed water storage facility for the City of Altamonte Springs (SJRWMD permit issued on May 4, 2012).
- Planned widening of I-4 through Altamonte Springs required that additional stormwater treatment be provided. FDOT originally planned to build a separate, above ground retention pond in an adjacent basin.
- Cooperation between the City, Apopka, FDOT and SJRWMD, enabled re-permitting of Cranes
 Roost to accommodate the additional runoff from I-4, as well as considering the City's
 infrastructure needs.
- Thus leading to the creation of the A-FIRST Project: <u>A</u>Itamonte Springs <u>F</u>DOT <u>I</u>ntegrated
 <u>Reuse & S</u>tormwater <u>T</u>reatment

North Lake Watershed & I-4 Corridor

CONTINUOUS SIMULATION MODELING

- Continuous simulation modeling based on 21 years or rainfall data and lake level/Floridan aquifer observations for Cranes Roost (1991 to 2011 at 15 minute increments)
- Modeled using the PONDS 3.3 Refined Method software, with features added specifically for this project
- Multi-basin, interconnected lake water bodies connected to Floridan aquifer

CONCEPTUAL MODEL

CRANE'S ROOST KEY ELEVATIONS

www.devoeng.com

Modeled Pumping Configuration

Pumping Schematic For Proposed Conditions

PUMP 1 - RECLAIMED WATER INFLOW INTO CRANES ROOST

- 1. Pump 1 can be activated when water level in Cranes Roost is below +48 ft NAVD, and
- 2. Pump 1 can be activated if Antecedent Moisture Condition (AMC) is AMC II or AMC III.
 3. Reuse water is pumped in at a rate of 4 MGD (only if reclaimed water is available from City plant).

PUMP 2 - STORMWATER HARVESTING

- 1. Stormwater harvesting occurs if the water level in Cranes Roost is greater than +48.0 ft NAVD.
- 2. Pumping occurs at a rate of 3 MGD (2,083 gpm).
- 3. Pumping is independent of Antecedent Moisture Condition.

PUMP 3 - STORMWATER PUMP OUTFALL TO LITTLE WEKIVA RIVER

- 1. Stormwater pumping to Little Wekiva River operates when water level exceeds +52.66 ft NAVD (by permit)
- 2. Stormwater pumping to Little Wekiva River stops when water level drops below +50.63 ft NAVD (by permit).
- 3. Water is pumped to Little Wekiva River at a rate of 10.8 MGD (7,500 gpm).
- 4. Maximum pumping threshold (by permit) is 11.5 MGD.

HIGH LEVEL STORMWATER PUMP

STORMWATER HARVESTING PUMP, (RATING CURVE)

www.devoeng.com

Refined Method - Crane	s Roost - Pro	posed (Trial G-02, with R	euse-In).prm	_ X			
File Edit Hydrographs Ro	ute <u>U</u> nits <u>O</u>	ptions <u>H</u> elp					
	<u> Pajai</u>						
1 Project Data		2 Aquifer Data	3 Geometry	4 Ditches and Trenches			
5 Discharge Structure	8	6 Hydrographs	7 Tabular Results	8 Graphical Results			
Discharge Structure 3	Stru	cture Type Conditional po	ump 🔻				
Conditional Pump							
Structure Data	tructure Data	1					
Tailwater C	escription 4	MGD Reuse-In Pumping, Belo	w Elevation +48 ft NAVD				
	umping Into	Pond					
	Pumping Rate	e For Pumping Into Pond (gpd)	4000000				
	Pump Off Ele	vation For Pumping Into Pond	(ft) 48				
	Pumping Into Pond Can Not Occur If The Following Discharge Structures Are Simultaneously Pumping:						
		arge Structure 1					
		arge Structure2 rarge Structure 3					
	Pumping Out Of Pond Describe Date For Describe Out Of Dand (see 1)						
	Pumping Rate For Pumping Out Of Pond (gpd) 0 Pump Off Elevation For Pumping Out Of Pond (ft) 46.907						
<u> </u>	Pumping Occurs During The Following Antecedent Moisture Conditions:						
	● Don't P		O Don't Pump				
	C Pump II		Pump In Pump Out				
	Definition Of Antecedent Moisture Conditions						
	✓ Use Default SCS Antecedent Moisture Definitions Used For Runoff Calculation						
		Bainfa					
	Dormant Se	(inche eason: AMCI< 0.5	s) (inches) (= AMC II <= 1.1	< AMC III			
	Growing Se		<= AMC II <= 2.1	< AMC III			
	lote: the condit	ional pump is only valid for coi	ntinuous simulation hydrographs.				
				DATA ICUMU OCKED			

REUSE IN: NEW DISCHARGE STRUCTURE TYPE IN PONDS 3.3

ROUND NUMBERS ONLY, BACK OF THE ENVELOPE HAND CALC

CRANES ROOST AS A PUMPED & RECONFIGURED BATHTUB DURING TS FAY

Storm event = TS Fay, 12.89 inches of rainfall in 6 days (Aug 18 to 23, 2008)

NEGATIVES

- -Loss of storage volume in Cranes Roost from geometric contraction due to I-4 = -16.7 ac-ft
- -North Lake transfer & I 4 Related additional runoff TS Fay = -97 ac-ft
 - 1 -28.3 ac-ft from North Lake
 - 2-59.7 ac-ft Additional I-4 Runoff
 - 3 -9.1 ac-ft additional discharge from Lake Adelaide

TOTAL INCREASE IN STORMWATER RUNOFF = -97 ac-ft total

POSITIVES

- -Initial stage credit of 1.5 ft at start of storm (49.0 vs 50.5) = +72 ac-ft
- -Pumped Discharge (Harvest) During Storm = 3,000,000 gpd (400,000 cubic feet per day) × 6 days duration of TS Fay = +55 ac-ft

NET GAIN IN STORAGE DURING TS FAY

Net Volume = -16.7 + 72 + 55 - 97 = +13.3 ac-ft, which translates into a maximum betterment of 0.2 ft in stage

Existing vs Proposed Hydroperiod

As-Permitted vs Proposed Annual Peak Stage

As-Permitted vs Proposed Peak Stage For TS fay

www.devoeng.com

AVAILABLE SUPPLEMENTAL REUSE WATER

www.devoeng.com

THE BENEFITS

- Elimination of I-4 retention pond & bridge
- 50% reduction in pumping discharge to Little Wekiva River
- Reduction in time that Cranes Roost facilities are not available due to high water/flood conditions
- Reduction in City's reliance on groundwater (Floridan aquifer) augmentation during periods when irrigation demand exceeds the supply of reclaimed water
- Provision of high level outfall for North Lake
- 434 million gallons per year (average) harvest volume now available to Apopka and Altamonte Springs
- Still allows for storage of excess reclaimed water in Cranes Roost when water levels fall below elevation +48 ft NAVD

STORMWATER AND RECLAIMED WATER INTEGRATED PLANS

POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER SEPT.2004

Table 3. Summary of Results For Recommended Operating Conditions								
	As	Trial	Trial					
Trial Number	Permitted	G-02	G-03					
Max. Pumping Rate to Little Wekiva River (gpm)	7,500	7,500	7,500					
Max. Pumping Rate to Apopka (gpm)	N.A.	2,083	2,083					
Combined Max. Pump-Out Rate at High Water Level, LWR + Apopka (gpm)	7,500	9,583	9,583					
Stormwater Pump-Off Elevation (ft NAVD)	50.63	50.63	50.63					
Reuse-In Nominal Pumping Rate (MGD)	4	4	0					
Reuse Pumping								
Reuse-In Cutoff Elevation (ft NAVD)	51.5	48	N.A.					
Reuse-Out/Apopka Cutoff Elevation (ft NAVD)	46.91	48	48					
Reuse-In Nominal Pumping Rate (MGD)	4	4	0					
Reuse-Out/Apopka Nominal Pumping Rate (MGD)	1	3	3					
Ratio of Reuse In / Reuse Out	4	1.33	N.A.					
Stormwater Pumping To Little Wekiva River	•							
Stormwater Pump-On Elevation (ft NAVD)	52.66	52.66	52.66					
Stormwater Pump-Off Elevation (ft NAVD)	50.63	50.63	50.63					
Max. Pump Capacity Available For Pumping to Little Wekiva River (gpm)	7,500	7,500	7,500					
Cumulative Discharge to LWR For 21 Year Model Period (ac-ft)	22,446	11,113	10,859					
Long Term Average Annual Stormwater Discharge (ac-ft/yr)	1069	529	517					
Change in Stormwater Pumping Compared to Baseline (%)	N.A.	50.5	51.6					
Days with Non-zero Stormwater Pumping To Little Wekiva River (days)	936	399	388					
Days with Non-zero Stormwater Pumping To Little Wekiva River (%)	12.2	5.2	5.1					
Leakage								
Cumulative Leakage For 21 Year Model Period (ac-ft)	27,141	18,073	15,460					
Average Long Term Annual Leakage (ac-ft/yr)	1292	861	736					
Change in Leakage From Baseline Conditions (%)	N.A.	33.4	43.0					
Reuse-In Pumping								
Reuse In, Cumulative Volume For Model Duration (ac-ft)	15,240	4,593	0					
Average Yearly Reuse In Volume (ac-ft/yr)	726	219	0					
Maximum Reuse-In Annual Volume (ac-ft/yr)	1115	512	0					
Minimum Reuse-In Annual Volume (ac-ft/yr)	320	5	0					

Model Results

Table 3. Summary of Results For Recommended Operating Conditions							
Trial Number	As Permitted	Trial G-02	Trial G-03				
Pumping To Apopka (or Reuse-Out)							
Cumulative Discharge To Apopka Or Reuse-Out For 21 Year Model Period (ac-ft)	12,548 (reuse out)	27,940	26,240				
Average Yearly Discharge To Apopka/Reuse-Out (ac-ft/yr)	598	1330	1250				
Average Yearly Discharge As Percentage Of Maximum Potential Discharge (%)	N.A.	39.6	37.2				
Maximum Yearly Discharge To Apopka/Reuse-Out (ac-ft/yr)	816	2,180	2,174				
Minimum Yearly Discharge To Apopka/Reuse-Out (ac-ft/yr)	30	0	0				
Average Yearly Net Reuse-Out [Reuse-Out minus Reuse-In] (ac-ft/yr)	-128	1112	1250				
Average Yearly Net Reuse-Out [Reuse-Out minus Reuse-In] (mgy)	- 42	362	407				
Days With Pumping							
Total Days In Model Period	7670	7670	7670				
Days with Non-zero Stormwater Pumping To Little Wekiva River (days)	936	399	388				
Days with Non-zero Stormwater Pumping To Little Wekiva River (%)	12.2	5.2	5.1				
Days With Reuse-In Pumping (days)	1402	756	0				
Days With Reuse In-Pumping (%)	18.3	9.9	0.0				
Days With Pumping To Apopka or Reuse-Out (days)	4151	3698	3466				
Days With Pumping To Apopka or Reuse-Out(%)	54.1	48.2	45.2				
Days with No Pumping (days)		52	4205				
Days with No Pumping (%)	19.1	0.7	54.8				
Cranes Roost Water Level Highs And Lows							
Number Of Days With Stage Greater Than 54 Ft NAVD	169	109	105				
Number Of Days With Stage Less Than 47.5 Ft NAVD	1763	2132	2740				
Highest Peak Stage (ft NAVD) [Aug 2008, TS Fay, 12.89 inches in 6 days]	59.1	59.0	59.0				
Second Highest Peak Stage (ft NAVD) [Nov 1994, Gordon, 9.61 inches in 4 days]	59.0	58.7	58.7				
Third Highest Peak Stage (ft NAVD) [Sep 1999, 6.67 inches in 3 days]	56.3	55.7	55.7				
Lowest Drought Stage (ft NAVD) [Jun 2000]	40.4	40.5	39.4				
Second Lowest Drought Stage (ft NAVD) [May 2002]	43.9	43.9	42.7				
Third Lowest Drought Stage (ft NAVD) [Jun 1998]	44.4	44.3	44.2				

MODEL RESULTS (CONT'D.)

