

Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Plantation Well Site in Marion County, Florida

Cover Photo: Andrew Bowie and Barry Morley retrieve a rock core sample using the wire line on the UDR 200DLS core rig during exploratory coring at the ROMP 132 well site. Photo taken by Anna Janosik on August 3, 2010.

Hydrogeology, Water Quality, and Well Construction at the ROMP 132 -Blitch Plantation Well Site in Marion County, Florida

By Anna Janosik

June 2011

Southwest Florida Water Management District Regional Observation and Monitor-well Program

Southwest Florida Water Management District

Resource Data and Restoration Department

Eric DeHaven, P.G., Director

Geohydrologic Data Section

Jerry Mallams, P.G., Manager

Southwest Florida Water Management District 2379 Broad Street Brooksville, FL 34604-6899

For ordering information:

World Wide Web: http://www.watermatters.org/documents

Telephone: 1-800-423-1476

For more information on the Southwest Florida Water Management District and its mission to manage and protect water and related resources:

World Wide Web: http://www.watermatters.org

Telephone: 1-800-423-1476

The Southwest Florida Water Management District (District) does not discriminate upon the basis of any individual's disability status. This non-discrimination policy involves every aspect of the District's functions, including one's access to, participation, employment, or treatment in its programs or activities. Anyone requiring reasonable accommodation as provided for in the Americans With Disabilities Act should contact the Resource Data and Restoration Department, at (813) 985-7481, extension 2113 or 1 (800) 836-0797 (Florida), extension 2113; TDD ONLY 1 (800) 231-6103 (Florida); FAX (813) 987-6747.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the Southwest Florida Water Management District.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Suggested citation:

Janosik, A.L., 2011, Hydrogeology, Water Quality, and Well Construction at the ROMP 132 -Blitch Plantation Well Site in Marion County, Florida: Southwest Florida Water Management District, 152 p. The hydrogeologic evaluations and interpretations contained in *Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Planation Well Site in Marion County, Florida* have been prepared by or approved by a licensed Professional Geologist in the State of Florida, in accordance with Chapter 492, Florida Statutes.

No. PG2249 Jerry Mallams 10N aE 5 Professional Geologist State of Florida License No. PG2249 Date: 6/27/2011

Foreword

The Regional Observation and Monitor-well Program (ROMP) was started in 1974 in response to the need for hydrogeologic information by the Southwest Florida Water Management District (District). The focus of the ROMP is to quantify the flow characteristics and water quality of the groundwater systems which serve as the primary source of potable water within southwest Florida. The original design of the ROMP consisted of a ten-mile grid network containing 122 well sites and a coastal transect network containing 24 coastal monitor transects of two to three wells sites each. Since its inception, the ROMP has taken on many more data collection and well construction activities outside these original two well networks. The broad objectives at each well site are to determine the geology, hydrology, groundwater quality, and hydraulic properties, and install wells for long-term monitoring. The majority of these objectives are achieved by core drilling and testing, which provides data for the hydrogeologic characterization of the well site. The ROMP staff then uses this characterization to ensure the site's monitor wells are properly installed. The hydrologic data of each completed ROMP well site are presented in either a summary or report.

Each ROMP well site is given a unique number and a site name. The ten-mile grid network numbering starts in the southern District with ROMP No. 1 and generally increases northward. The coastal transect network numbering starts with ROMP TR 1 in the south and also increases northward.

Jerry Mallams Manager

Contents

Introduction	1
Site Location	1
Data Collection Methods	1
Well Construction	4
Geology	6
Cedar Keys Formation (Paleocene)	6
Oldsmar Formation (Early Eocene)	6
Avon Park Formation (Middle Eocene)	7
Ocala Limestone (Late Eocene)	8
Undifferentiated Hawthorn Group (Miocene)	9
Undifferentiated Sand and Clay (Pliocene)	9
Hydrology	9
Surficial Aquifer	9
Confining Unit	12
Upper Floridan Aquifer	12
Confining Unit	14
Groundwater Quality	15
Summary	16
References	18
Appendix A - Methods of the Regional Observation and Monitor-well Program	20
Appendix B - Geophysical logs	26
Appendix C - Well diagrams	38
Appendix D - Lithologic log	40
Appendix E - Slug test field notes	75
Appendix F - Slug test curve match solutions	102
Appendix G - Aquifer performance test field notes	122
Appendix H - Aquifer performance test curve match solutions	126
Appendix I - Groundwater quality sample field notes	130
Appendix J - Groundwater quality sample field and laboratory analysis results	151

Figures

1-3.	Maps showing:
	1. Location of the ROMP 132 well site in Marion County, Florida2
	2. Easement configuration and general layout of the ROMP 132 well site in Marion County, Florida
	3. Configuration of wells at the ROMP 132 well site in Marion County, Florida 3
4.	Stratigraphy at the ROMP 132 well site in Marion County, Florida7
5.	Floridan aquifer system correlation chart10
6.	Hydraulic conductivity and groundwater level with depth during exploratory
	coring and testing at the ROMP 132 well site in Marion County, Florida13
7.	Hydrograph of groundwater levels in three wells before, during, and after the Upper Floridan aquifer performance test at the ROMP 132 well site in Marian County Florida
	Marion County, Florida14

8.	Major ion concentration with depth at the ROMP 132 well site in Marion
	County, Florida16
9.	Piper diagram of groundwater quality samples collected at the ROMP 132 well
	site in Marion County, Florida17

Tables

- 1. Surveyed elevation points at the ROMP 132 well site in Marion County, Florida5

- 4. Slug test data collected at the ROMP 132 well site in Marion County, Florida ... 11

Conversion Factors and Datums

Multiply	Ву	To obtain
	Length	
inch (in.)	2.54	centimeter (cm)
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
	Volume	
gallon (gal)	3.785	liter (L)
gallon (gal)	0.003785	cubic meter (m ³)
	Flow rate	
gallon per minute (gal/min)	0.06309	liter per second (L/s)
	Mass	
ounce, avoirdupois (oz)	28.35	gram (g)
	Hydraulic conductivity	
foot per day (ft/d)	0.3048	meter per day (m/d)
	Transmissivity*	
foot squared per day (ft ² /d)	0.09290	meter squared per day (m ² /d)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8x°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/1.8

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88) and the National Geodetic Vertical Datum of 1929 (NGVD 29).

Elevation, as used in this report, refers to distance above the vertical datum.

*Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times foot of aquifer thickness $[(ft^3/d)/ft^2]$ ft. In this report, the mathematically reduced form, foot squared per day (ft²/d), is used for convenience.

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 $^\circ\text{C}).$

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter $(\mu g/L)$.

Acronyms and Abbreviations

μg/l	micrograms per liter
APT	aquifer performance test
bls	below land surface
btoc	below top of casing
CAL	caliper
CME	Central Mining Equipment
District	Southwest Florida Water Management District
ft	feet
ft/day	feet per day
GAM	gamma
gpm	gallons per minute
HQ	3.5-inch temporary steel casing
HWT	4-inch temporary steel casing
mg/l	milligrams per liter
PVC	polyvinyl chloride
RES	resistance geophysical log
RES (16N)	short normal resistivity
RES (64N)	long normal resistivity
ROMP	Regional Observation and Monitor-well Program
SID	District site identification number
Т	transmissivity
UDR	Universal Drill Rigs
USEPA	United States Environmental Protection Agency
WMIS	Water Management Information System

viii

Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Plantation Well Site in Marion County, Florida

By Anna Janosik

Introduction

The Southwest Florida Water Management District's (District) investigation at the Regional Observation and Monitor-well Program (ROMP) 132 Blitch Plantation site was designed to provide detailed information about the geologic and hydrologic characteristics of the subsurface materials. Information of this type enables the District to make informed decisions central to its mission of balancing the water needs of current and future users while protecting and maintaining water and related natural resources. The site investigation will help define the boundaries of middle confining units I and II as defined by Miller (1986), and therefore the vertical and geographic extent of the Lower Floridan aquifer(s) beneath these units. Additionally, the data collected will assist to identify the vertical extent of potable groundwater in this location.

The ROMP 132 site was developed in four phases: shallow exploratory coring and testing, well construction, aquifer performance testing, and deep exploratory coring. Exploratory coring was conducted from land surface to 1,727 feet below land surface. Two wells were constructed in the Upper Floridan aquifer; one a temporary production well, the second a permanent monitor well. Finally, an aquifer performance test was conducted in the Upper Floridan aquifer. This report presents the data collected during the activities of each of these four phases, which began on June 2, 2008 and ended on September 16, 2010.

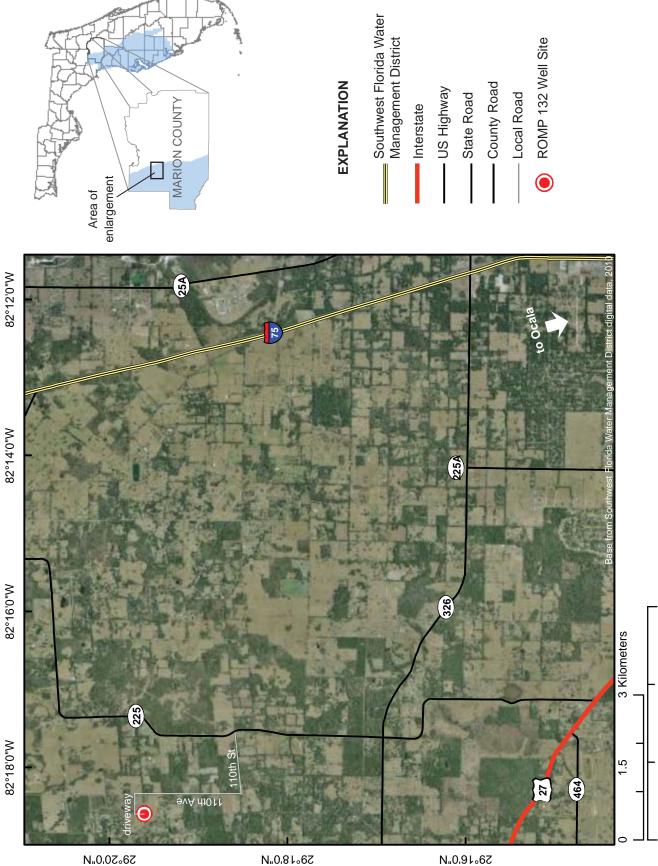
Hydrogeologic data collected at the ROMP 132 site can be downloaded from the District's website (http://www. swfwmd.state.fl.us/) using the Water Management Information System (WMIS). Data from the site is compiled under WMIS portfolio number 242. The data available for download include lithologic logs, groundwater quality parameters, groundwater levels, hydraulic test parameters, raw hydraulic test data, and geophysical logs. This report is also available for download from the system.

Site Location

The ROMP 132 well site is located approximately 15 miles northwest of Ocala on private property owned by John Rudnianyn. The site lies within the eastern half of Section

28, Township 13 South, Range 20 East at Latitude 29° 19' 36" North, Longitude 82° 18' 35" West (figure 1). It can be reached by traveling approximately 6.4 miles west from Interstate 75 on County Road 326, turning north onto County Road 225, traveling 1.7 miles and turning west onto 110th Street, traveling 0.8 miles and turning north onto 110th Avenue, and finally finding the driveway on the west side of the road, after the fence line for Fogg Road Farm ends, that leads to the site.

The site is located within the Fairfield Hills physiographic region in the Central Highlands of the Mid-Peninsular zone of Florida (White, 1970). The region contains few lakes, but contains about a dozen small ponds and some wet prairie areas (Griffith et al., 1997). The topography of the area indicates the site is located within a valley-like feature (figure 2). Surface water may be draining into this small valley and traveling northeast into ponds. This process is most likely contributing to the enhanced erosion of surface sediments at the site. The thickness of the shallow subsurface sediments within the vicinity of the well site may vary significantly due to this erosion process. This report presents only the findings at the location of exploration, where shallow subsurface sediments may be thin in comparison to surrounding areas.


During the four data collection phases, the site consisted of a 10-foot by 30-foot permanent well site, 150-foot by 250foot temporary construction area, and a 15-foot wide ingress/ egress easement (figure 3). The temporary construction area was returned to John Rudnianyn after data collection was completed.

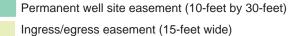
Two survey elevation control stations were installed at the site by a District crew on July 2, 2008. The survey crew also measured the elevation at the top of the 2-inch steel water supply well and the core hole measuring point on that date (table 1).

Data Collection Methods

This section covers general data collection methods specific to the ROMP 132 site. Detailed descriptions of the data collection methods used by the ROMP are presented in Appendix A.

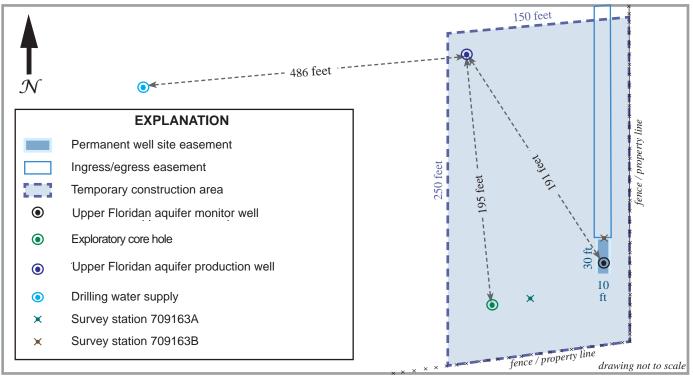
During exploratory coring and testing, the District's CME 85 core rig was used to advance the core hole and to collect lithologic core samples in 5-foot intervals through a wire line

3 Miles


Figure 1. Location of the ROMP 132 well site.

ςΩ.

82°18'0"W



EXPLANATION

- Temporary construction area (150-feet by 250-feet)
- Marion County parcels
- -100 Contour line and elevation in feet above sea level

Configuration of wells at the ROMP 132 well site in Marion County, Florida. See tables 1 and 3 for well information. Figure 3.

recovery system from land surface to 1,500 feet below land surface. Later, the District's UDR 200 core rig was used to advance the same core hole and to collect lithologic core samples in 10-foot intervals through a wire line recovery system between 1,500 and 1,727 feet below land surface.

A packer assembly was used to isolate 21 discrete intervals for hydraulic and groundwater quality testing during the advancement of the core hole. Slug tests were conducted on, groundwater quality samples were collected from, and groundwater levels were measured in each of the 21 discrete intervals. All slug tests, except the last, were rising head tests initiated using a pneumatic slug. The last slug test was a falling head test, initiated with a physical slug. All groundwater quality samples, except the first and last, were collected at a land surface discharge point using the reverse air pumping method. The first groundwater quality sample was collected at land surface using a low flow Geotech SS Geosub pump. The last groundwater quality sample was collected using a nested bailer assembly that was attached to the packer. The composite groundwater level in the core hole (reflecting the entire open interval of the core hole) was measured every morning before coring commenced, and the pH, temperature, and specific conductivity of the drilling discharge was monitored after every 20 feet of core hole advancement.

Geophysical logs were collected at various stages of core hole construction, and during the construction of the Upper Floridan aquifer production and monitor wells (table 2 and appendix B). The core hole was logged four times. Two of these log suites were collected from inside the drill rods, which acted as casing, and allowed the logging tool to get much deeper than in would have in the uncased core hole. The slim line tool (which collects natural gamma logs), however, is the only tool owned by the District that can fit inside the drill rods.

The constant rate Upper Floridan aquifer performance test was conducted between December 28, 2009, and December 29, 2009. The Upper Floridan aquifer production well was pumped at 2,900 gallons per minute for 24 hours. The groundwater discharged from the well was transported approximately 1,000 feet north of the site into a surface depression. Pumping began after 12 days of background groundwater level data collection. Groundwater level data were also collected 6 days after pumping ceased. Groundwater levels were monitored in the core hole, the Upper Floridan aquifer monitor well, and the drilling water supply well.

Well Construction

The exploratory core hole was created using well construction permit numbers 774845, 780048, and 806256. Coring commenced June 2, 2008 at land surface with the District's CME 85 coring rig. On June 4, 2008, 10-inch PVC casing was installed to 56 feet below land surface to stabilize the core hole. Temporary 4-inch (HWT) working casing was installed 71 feet below land surface; just below the groundwater surface. On June 24, 2008, 6-inch PVC casing was installed to 128 feet below land surface near the top of the Avon Park Formation. The temporary 4-inch HWT working casing was driven down to 132 feet below land surface. Coring was suspended on February 25, 2009, 1,500 feet below land surface, at the maximum safe coring depth for the CME 85 rig. The 4-inch HWT working casing was removed and groundwater level monitoring equipment was installed in the well. Groundwater level data were collected between March 18, 2009, and July 9, 2010. On July 20, 2010, the groundwater level monitoring equipment was removed, temporary 3.5inch HQ working casing was installed to 133 feet below land surface, and coring resumed with the District's UDR 200 drill rig. Exploratory coring ended on August 3, 2010, at a depth of 1,727 feet below land surface. The core hole was abandoned by a District crew in March 2011 using well construction permits 806791 and 810557. A summary of well specifications for the core hole and the other wells constructed or monitored at the ROMP 132 site is presented in table 3.

The Upper Floridan aquifer production well, SID 750869, was constructed by Diversified Drilling Corporation under well construction permit number 786168 between August 10, 2009, and October 1, 2009. The well was completed with 16-inch steel casing extending from land surface to 129 feet below land surface, 14-inch steel casing extending from 129 to 150 feet below land surface, and a 12-inch open hole interval extending from 150 to 1,000 feet below land surface (figure C-2 in Appendix C). The well was originally designed with 16-inch steel casing extending to 150 feet below land surface; however, the 16-inch casing could not be advanced past a hard ledge encountered 132 feet below land surface. Telescoping the 14-inch casing out of the bottom of the 16-inch casing allowed passage around this ledge. The well was pumped during the Upper Floridan aquifer performance test and then properly abandoned under well construction permit number 801822.

The Upper Floridan aquifer monitor well, SID 750867, was also constructed by Diversified Drilling Corporation, under well construction permit number 787373, between October 8, 2009, and December 8, 2009. The well was completed with 4-inch Schedule 40 PVC casing extending 239 feet below land surface, and an open hole interval extending from 239 to 994 feet below land surface (figure C-1 in Appendix C). The well was originally designed with 6-inch PVC casing extending to 135 feet below land surface, however, a loose, cavernous interval was encountered approximately 225 feet below land surface while drilling the open hole interval. Because the integrity of the open hole was compromised, 8-inch steel casing was installed below the loose interval, to 239 feet below land surface. The rest of the open hole was then drilled, and lastly, the 4-inch PVC lining was installed with formation packers. The well was used for observation during the Upper Floridan aquifer performance test, and remains at the site to provide long term groundwater level and quality data for the District and other users.

 Table 1.
 Surveyed elevation points at the ROMP 132 well site in Marion County, Florida. See figure 3 for survey station and well locations.

[NAVD 88, North American Vertical Datum of 1988; NGVD 29, National Geodetic Vertical Datum of 1929]

Survey station or well name	Location	Elevation in feet NAVD 88	Elevation in feet NGVD 29
709163A 2008	Elevation control station inside the temporary construction area	108.89	109.75
709163B 2008	Elevation control station inside the permanent well site	109.22	110.08
Exploratory core hole	Top of 10-inch PVC casing (land surface) on July 2, 2008	107.64	108.50
Drilling water supply	Top of 2-inch steel casing (1.43 feet above land surface)	116.67	117.53

Table 2. Geophysical log suites collected at the ROMP 132 well site in Marion County, Florida. See Appendix B for well diagrams during logging and geophysical logs.

[all depths are in feet below land surface; -, no value; AQ, aquifer; CAL, caliper; CD, casing depth; D, diameter of the well in inches; FLDN, Floridan; GAM, gamma; MULTI, multifunction; ROMP, Regional Observation and Monitor-well Program; SLIM, slim line; TEMP, temporary; U, Upper]

						Tool		Log location (figure
Date	Well Name	CD	D	Log Depth	CAL/ GAM	MULTI	SLIM	number) in Appendix B
6/23/2008	Exploratory core hole	56	10	125 125	- X	X -	-	B-2
1/21/2009	Exploratory core hole	131	4	1,315 1,299	- X	х -	-	B-3
2/23/2009	Exploratory core hole	1,500	2.375	1,505	-	-	х	B-4
9/15/2010	Exploratory core hole	1,734	2.375	1,734	-	-	Х	B-5
12/2/2000	Upper Floridan aquifer monitor well	239	8	993 994	- X	X -	-	B-6
12/3/2009	Upper Floridan aquifer production well	129	14	995 994	- X	x -	-	B-7
1/29/2010	Upper Floridan aquifer monitor well	239	4	989	Х	-	-	B-8

Table 3. Wells at the ROMP 132 well site in Marion County, Florida. See figure 3 for well locations and Appendix C for well diagrams..

[-, no value; AQ, aquifer; CD, casing depth in feet below land surface; D, diameter of the well in inches; FLDN, Floridan; PVC, polyvinyl chloride; R, radial distance to pumped well in feet; ROMP, Regional Observation and Monitor-well Program; SID, District site identification number; TD, total depth of well in feet below land surface; TEMP, temporary; U, Upper; WMIS, Water Management Information System; WCP, well construction permit number]

Well name (and WMIS name)	SID	Latitude	Longitude	TD	CD	D	Material	R	WCP
Exploratory core hole (ROMP 132 COREHOLE)	709163	29° 19' 36.53"	82º 18' 35.64''	1,727	128	6	PVC	195	774845, 780048, 806256, 806791 810557
Upper Floridan aquifer monitor well (ROMP 132 U FLDN AQ MONITOR)	750867	29° 19' 36.88''	82° 18' 34.88''	994	239	4	PVC	191	787373
Upper Floridan aquifer production well (ROMP 132 U FLDN AQ PRODUCTION TEMP)	750869	29° 19' 38.38''	82° 18' 36.21''	1,000	150	14	Steel	0	786168, 801822
Drilling water supply (ROMP 132 U FLDN AQ DRILLING WATER SUPPLY)	750886	29° 19' 38.34''	82° 18' 41.81''	139	86	4	Steel	486	-

Geology

The characterization presented below was based on the lithology encountered during exploratory coring at the ROMP 132 site. The geologic units encountered included, in ascending order, the Cedar Keys Formation, Oldsmar Formation, Avon Park Formation, Ocala Limestone, undifferentiated Hawthorn Group sediments, and undifferentiated sand and clay (figure 4). The geology at the ROMP 132 well site generally consists of thick sequences of consolidated carbonates overlain by a relatively thin veneer of unconsolidated clastic sediments. The unconsolidated clastic sediments are most likely marine terrace deposits resulting from numerous high and low sea-level stands during glacial and interglacial periods (Faulkner, 1973). The area surrounding the site is a coveredkarst terrain with appreciable dissolution and subsidence of the shallow limestone surface. Active karstification causes the surface of the carbonates to be highly weathered and irregular. The characterization that follows reflects the lithology encountered during exploratory coring, and is unique to the location of exploration. The geology of the surrounding area may vary slightly; most notably near the surface.

A log of lithologic descriptions is presented in Appendix D. The textural terms used to characterize carbonate rocks in this report are based on the classification system of Dunham (1962). Porosity percentages are given as estimates based on visual inspection of the materials, as opposed to laboratory tesing, and should be considered observable porosity. Color descriptions are based on the scale presented in the Rock-Color Chart published by the Geological Society of America (The Rock-Color Chart Committee, 1984).

The contact between the Cedar Keys and the Oldsmar Formation is gradational, suggesting conformity. The contact is 1,557 feet below land surface, where there is a very pale orange dolostone with abundant foram casts. These forams appear to be *Cribrospira bushnellensis* and/or *Borelis gunteri*; however, their diagnostic features have been too altered by the dolomitization process to positively identify.

The contact between the Avon Park Formation and the Oldsmar Formation is gradational suggesting conformity and is 900 feet below land surface. The contact is marked by a 0.5-foot layer with abundant accessory pyrite, and a grayish green material suspected to be glauconite. Additionally, a layer is present just below the contact which contains abundant fossil remains of the foram *Helicostigina gyralis*.

The contact between the Avon Park Formation and the Ocala Limestone is unconformable, and is 125 feet below land surface, at the top of a subhedral dolostone bed. The characteristic gamma peak caused by accessory organics often seen at this contact was not observed. An appreciable amount of weathering has eroded the contact, which may have removed the organics. A fine-grained carbonate sand layer is present between the overlying Ocala Limestone and the top of the Avon Park Formation.

The contact between the Ocala Limestone and the Hawthorn Group sediments is unconformable. The contact is 13 feet below land surface, at the top of a chert bed. The top of the Ocala Limestone is highly weathered, and the clays of the Hawthorn Group have migrated downward into voids. The top of the Ocala Limestone in the region is suspected to be highly variable and dependent on the amount of weathering at a given location.

The contact between the Hawthorn Group sediments and the undifferentiated sand and clay is gradational. It is marked by the first appearance of light olive colored clay 6 feet below land surface.

Cedar Keys Formation (Paleocene)

The Paleocene age Cedar Keys Formation was the oldest and deepest formation encountered during exploratory coring and testing. The top of the formation is 1,557 feet below land surface. The bottom of the formation was not reached during exploration. Winston (1994) identified six distinct lithologic units within the Cedar Keys that he denoted A through F. Unit A was not distinguishable from Unit B at the ROMP 132 site. The top of the formation contains a relic grain structure that resembles what Winston describes as Unit B, however the presence of Unit A could not be confirmed or denied. The top of Unit C was observed 1,637 feet below land surface at the first occurrence of anhydrite.

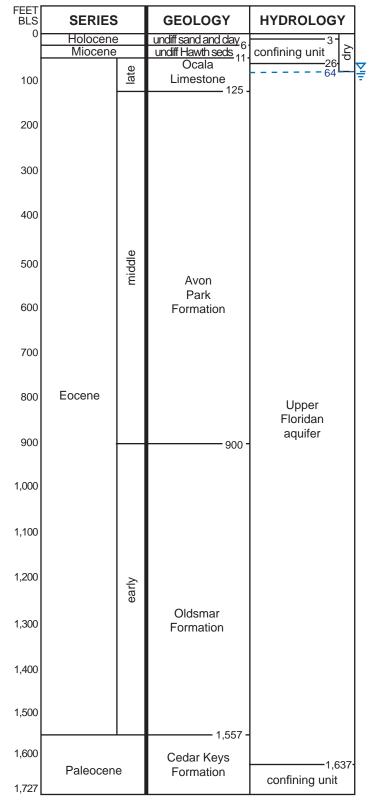
Units A and B, between 1,557 and 1,637 feet below land surface, contain very pale orange, chiefly anhedral, cryptocrystalline (crystals not visible under x30 magnification) to fine grained, dolostone of moderate to good induration, with laminations and a relic grain structure. Observable porosity in this part of the formation is intercrystalline and pin point vugular, and is estimated to be between 15 and 25 percent. Altered foram casts, suspected to be *Cribrospira bushnellensis* and/or *Borelis gunteri*, are abundant at 1,557 feet below land surface and grade to less abundance with depth.

Unit C, between 1,637 feet and the total depth of exploration of 1,727 feet below land surface, is pinkish gray and dark yellowish brown, anhydrite and cryptocrystalline (crystals not visible under x30 magnification) dolostone mix, with good induration. Observable porosity in this part of the formation is intercrystalline, and extremely low (estimated to be between 0 and 1 percent). Dolosilt laminations are common.

Oldsmar Formation (Early Eocene)

The early Eocene age Oldsmar Formation extends between 900 and 1,557 feet below land surface. The lithology consists generally of thickly interbedded, fractured dolostone, and fossiliferous packstone to wackestone. Generally, the lower half of the formation is more extensively dolomitized than the upper half. Intervals where the drill string moved downward without resistance, or "bit drops," were common, and encountered between 985 and 987 feet, 998 and 999 feet, 1,266 and 1,268 feet, 1,389.0 and 1,389.1 feet, 1,400.7 and 1,401.0 feet, 1,467.0 and 1,467.4 feet, and 1,487.0 and 1,487.25 feet below land surface.

Between 900 and 1,026 feet below land surface are thickly interbedded, moderate yellowish brown dolostones, and very pale orange packstones. The dolostones of this interval are subhedral, cryptocrystalline (crystals not visible under x30 magnification) to medium grained, of good induration, and contain foram casts. The packstones of this interval are partially dolomitized, have interclast and skeletal cast grain types, and contain forams, mollusks, and oolites. Fossil remains of the foram *Helicostigina gyralis* are present between 900 and 946 feet below land surface. Observable porosity between 900 and 1,026 feet below land surface is intergranular, intercrystalline, and moldic, and ranged between 5 and 20 percent.


The lithology between 1,026 and 1,205 feet below land surface is extremely variable and contains interbedded dolostones, mudstones, packstones, wackestones, and grainstones. Vugs are commonly lined with white quartz clusters, referred to informally in the field as "snowballs." Fossil remains of forams and mollusks are most notable between 1,151 and 1,165 feet below land surface. Observable porosity between 1,026 and 1,205 feet below land surface is predominately intergranular and vugular and ranges between 10 and 20 percent.

The portion of the formation between 1,205 and 1,557 feet below land surface contains exclusively dolostone and is noticeably more dense, and crystalline, than the portion above. The dolostones range from subhedral to anhedral, have generally good induration, and contain few fossils. Secondary, fracture and vugular porosity, account for the majority of the observable porosity, which ranges between 5 and 25 percent. Rare organic laminae and clay were observed. Abundant gastropod molds were observed approximately 1,222 feet below land surface. Highly fractured dolostone beds exist between 1,200 and 1,220 feet, 1,250 and 1,321 feet, 1,425 and 1,468 feet, and 1,473 and 1,489 feet below land surface. Sample recovery in these intervals required multiple retrieval runs, and fragments fell from the core hole walls during drilling. Below 1,489 feet below land surface, the dolostone is predominately crypto- (crystals not visible under x30 magnification) to microcrystalline and the presence of fractures and vugs is much less than above.

Avon Park Formation (Middle Eocene)

The middle Eocene age Avon Park Formation extends between 125 and 900 feet below land surface and contains thickly interbedded dolostones and variably dolomitized limestones. Massive organic beds and voids are common throughout the formation.

Between 125 and 276 feet below land surface the formation resistivity increases dramatically (figure B-3 in Appendix B) implying the carbonates of this layer are much more dense than the carbonates above and below it. Traces of organic

[Not to scale; Land surface elevation = 108 feet above the North American Vertical Datum of 1988; bls, below land surface; undiff, undifferentiated; undiff Hawth seds, undifferentiated Hawthorn Group sediments]

Figure 4. Stratigraphy at the ROMP 132 well site in Marion County, Florida.

8 Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Plantation Well Site

material are common throughout the layer; however, the characteristic gamma peak associated with the top of the formation was not observed. Between 125 and 167 feet below land surface, the lithology consists of a grayish orange, slightly weathered, dolostone, with good induration, few fractures, and trace organics. The predominately very pale orange wackestones and packstones between 167 and 211 feet below land surface are of good induration, and are partially dolomitized in parts. The dolostone between 211 and 276 feet below land surface is gravish orange, predominately microcrystalline, with good induration, fossil molds, and iron staining along fractures and vugs. An unconsolidated, calcareous, iron stained, silt to siltyfine-sand layer was encountered between 225 and 230 feet below land surface causing an increase in core hole diameter (figure B-3 in Appendix B). Observable porosity between 125 and 276 feet below land surface was intergranular, pin point vugular, and moldic, and ranges between 5 and 25 percent.

Between 276 and 550 feet below land surface, the lithology consists of predominately very pale orange to white, weathered, subhedral dolostone, with variably dolomitized wackestones and packstones. Organic laminae are common. A possible void or fracture was encountered approximately 409 feet below land surface. It was first noticed during drilling when almost no water pressure was required to core this location. A large (approximately 5-inch wide), water-worn vug was observed in the core retrieved from this location; however, the caliper log shows no major change in core hole diameter. The peaks on the gamma log (figure B-3 in Appendix B) between 417 and 418 feet below land surface, and between 430 and 435 feet below land surface, were created by a black lignitic organic and greenish gray clay layer, and a dark yellowish brown clay layer, respectively. Casts of the foraminifera Cushmania americana (formerly Dictyoconus americanus) and various coral species are very common in the limestones between 470 and 550 feet below land surface. Observable porosity between 276 and 550 feet below land surface is intergranular, pin point vugular, and vugular, and ranges between 2 and 25 percent.

The carbonates between 550 and 710 feet below land surface are predominately pale yellowish brown to dark yellowish orange dolostones with moderate to high degrees of alteration, and good induration, interbedded with packstones and wackestones of variable dolomitization, and good induration. Fractures are not common, but are most notable between 630 and 647 feet below land surface. Vugs are commonly filled with uninhibited dolostone, scalenohedral (dogtooth) calcite, and/or quartz crystals. Massive organic layers and laminae are common. The thickest of these layers is present between 684 and 694 feet below land surface, and contains very dark brown to black, lignitic, flakey organics of moderate induration. This layer can be seen as a peak on the gamma log (figure B-3 in Appendix B) along with similar, less massive, layers between 557 and 559 feet below land surface, and 577 and 578 feet below land surface.

The base of the formation, between 710 and 900 feet below land surface, contains the fossiliferous limestone

formerly referred to as the Lake City Limestone. The layer between 711 and 808 feet below land surface contains a very pale orange to grayish orange, microfossiliferous, packstone, of moderate to good induration, with calcite lined vugs. A green material, suspected to be glauconite fills the pore spaces between 712 and 715 feet below land surface. The layer between 808 and 900 feet below land surface contains a very pale orange to grayish orange, vuggy, wackestone, with good induration, macrofossils, and vugs lined with a mineral suspected to be glauconite. Fossils observed in this layer included large (from 2 to 10 millimeters in diameter) coral and mollusk casts. A weathered framework of limestone and a void filled with silty carbonate sand and fine organics was encountered between 851 and 874 feet below land surface.

Ocala Limestone (Late Eocene)

The late Eocene age Ocala Limestone extends between 11 and 125 feet below land surface, and represents the shallowest occurrence of rock at the ROMP 132 well site. The upper most part of the formation, between 11 and 25 feet below land surface is highly altered; containing abundant chert and an infilling of post depositional clay. The rest of the formation contains predominately packstone. Fossil molds and casts, most notably those of the foram *Nummulities vanderstoki*, are present throughout the formation. Microfossils are most abundant between 46 feet and 60 feet below land surface, whereas macrofossils are most abundant between 95 feet and 115 feet below land surface.

A mixture of chert, limestone, and clay infilling is present between 11 and 46 feet below land surface. A quartz crystal lined vug was found 14 feet below land surface. Dark yellowish brown, soft, slightly silty clay infill, mixed with nodules of weathered chert, limestone, and sandstone, compose the majority of the layer. The clay caused an uncharacteristically high gamma response for the Ocala Limestone (figure B-2 in Appendix B). A massive chert layer is present between 11 and 25 feet below land surface. The chert ranges in color from white to light olive gray and contains what appear to be highly altered *Lepidocyclina ocalana* molds that indicate the parent material was likely Ocala limestone. Observable porosity of this layer is fractured, vugular, intergranular, and is approximately 30 percent.

Between 45 and 53 feet below land surface is a white, highly weathered, skeletal packstone with poor to good induration, iron staining and abundant *Nummulities vanderstoki* molds. Beds of dark yellowish brown clay are present between 45 and 46 feet below land surface, and 50.0 and 50.5 feet below land surface. Observable porosity in this interval is predominately intergranular, but is moldic and vugular in parts, and ranges between 15 to 20 percent.

Between 53 and 92 feet below land surface is a white to very pale orange, weathered, predominately grainstone, of moderate induration with abundant iron staining and few fossils. Fossil casts, such as those of *Nummulities vanderstoki*, are common between 53 and 57 feet below land surface, but are rare throughout the rest of the interval. Observable porosity is 20 percent and intergranular.

Between 92 and 125 feet below land surface is a pale yellow, weathered, packstone of moderate to good induration with macrofossil molds and casts, abundant iron staining, and few calcite lined vugs. Iron stains are along most large pore spaces and flow paths and are most evident between 92 and 95 feet below land surface. Mollusk, echinoid, and *Eupatagus sp.* molds and casts are common throughout the layer. Weathering is most prominent between 115 and 125 feet below land surface, where there is a framework of the packstone, infilled with very pale brown, calcareous, fine grained, quartz sand. Much of the fine sand was removed or washed away during development of the core hole, causing an increase in core hole diameter (figure B-2 in Appendix B). Observable porosity is predominately intergranular, but moldic in parts, and ranges between 15 and 25 percent.

Undifferentiated Hawthorn Group (Miocene)

The Miocene aged undifferentiated Hawthorn Group sediments are between 6 and 11 feet below land surface. This layer consists of light olive to brown, highly plastic, mottled, clay between 6 and 10 feet below land surface, which grades to a light greenish gray, highly plastic, heavily iron stained clay between 10 and 11 feet below land surface. Observable porosity is intergranular and ranges between 1 and 3 percent.

Undifferentiated Sand and Clay (Pliocene)

A sand and clay layer is present between land surface and 6 feet below land surface. Sample recovery during coring was poor through this interval; therefore classification was conducted inside the drilling discharge pit, which bisected the layer. The layer contains a dark yellowish brown, slightly silty, fine grained, quartz sand with few organics between land surface and 0.8 feet below land surface; a light brown to moderate brown, slightly clayey, fine grained, quartz sand with some mottles between 0.8 and 3.8 feet below land surface; and a moderate gray to light brown, mottled, clay between 3.8 and 6 feet below land surface. Observable porosity in this layer is intergranular, ranges between 3 and 15 percent, and generally decreases with depth.

Hydrology

The hydrogeologic units at the ROMP 132 well site include, in descending order, a confining unit, the Upper Floridan aquifer, and a confining unit (figure 4). The Upper Floridan aquifer is the only aquifer in the Floridan aquifer system at the ROMP 132 well site. Groundwater was first encountered 64 feet below land surface during exploration. A comparison of the nomenclature used in this report and previously published reports is presented in figure 5.

The delineation of the hydrogeologic units presented below is based primarily on the relative hydraulic conductivity estimates obtained from 21 slug tests conducted during exploratory coring and testing. Groundwater level data, groundwater quality data, lithologic descriptions, and geophysical logs are also used to aid in the delineation. The hydraulic conductivity values obtained from slug testing are not absolute because of the sources of error identified in Appendix A, however, they can be used to compare relative changes in hydraulic conductivity with depth. The hydraulic conductivity estimates derived from slug test analysis are shown in table 4. The hydraulic conductivity estimates in graphic form along with the groundwater level data collected from each tested interval are shown in figure 6. Slug test field notes are presented in Appendix E, and the analytical curve-match solution for hydraulic conductivity for each test are presented in Appendix F.

An aquifer performance test was conducted in the Upper Floridan aquifer. General details of the test were previously discussed in the Data Collection Methods section of this report. More specific methodologies and findings are given below. Aquifer performance test field notes are presented in Appendix G, and the analytical curve-match solutions for transmissivity are presented in Appendix H.

Surficial Aquifer

The surficial aquifer is absent at the ROMP 132 well site. The quartz sand layer described in the undifferentiated sand and clay section was dry at the time of exploration, and is presumed to be dry year-round. As mentioned in the Introduction, the well site is located within a valley-like feature where enhanced erosion of the surface sediments likely results. This report presents only the findings at the location of exploration, where shallow sediments may be thin in comparison to surrounding areas.

Sand seams and karst features could be providing pathways for the drainage of surface water to the underlying Upper Floridan aquifer. In the location of the core hole, redoximorphic features were observed suggesting saturated periods. Soil mottles were first observed about 2 feet below land surface. During exploratory coring and testing, the low area to the north of the site filled with water during the rainy months, most notably when Tropical Storm Fay passed over the site in late August 2008, and was dry during the winter months. Drainage of surface water into the Upper Floridan aquifer is suspected to occur slowly; causing a temporary perched water table after significant rain events and allowing time for redoximorphic features to develop in the sediments.

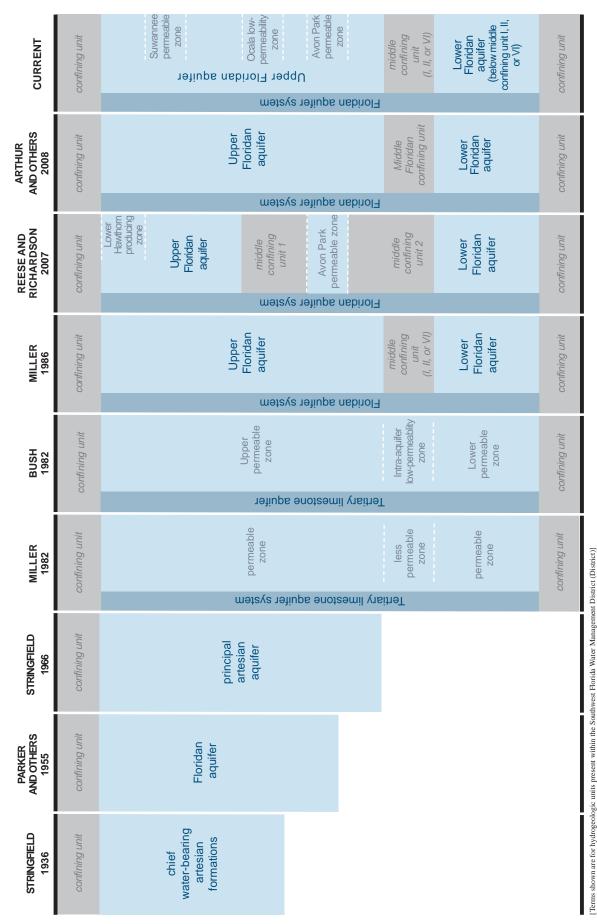


Figure 5. Floridan aquifer system correlation chart.

Table 4. Slug test data collected at the ROMP 132 well site in Marion County, Florida. See figure 6 for hydraulic conductivity and water level plots and Appendices E and F for slug test field notes and curve match solutions.

[NAVD 88, North American Vertical Datum of 1988; KGS, Kansas Geological Survey]

ā		Interval					Hydraulic
siug test number	Date of test	tested in feet below land surface	Lithologic description	Response damping	Analytical method	Groundwater elevation in feet NAVD 88	conductivity in feet per day
1	6/12/2008	71-110 ^a	Ocala Limestone - fossiliferous packstone to grainstone	over	KGS Model (Hyder, 1994)	43.47	56
7	7/9/2008	132-175 ^a	Avon Park Formation - predominately dolostone with mudstone bed in bottom 8 feet of interval	critical	KGS Model (Hyder, 1994)	43.20	11
ς	7/10/2008	180-215	Avon Park Formation - packstone with dense fractured dolostone in bottom 5 feet of interval	under	Butler (1998)	43.10	130
4	7/22/2008	233-285	Avon Park Formation- fractured dolostone and wackestone	under	Butler (1998)	43.14	79
S	7/29/2008	303-360	Avon Park Formation- dolostone with large vugs	under	Butler (1998)	43.08	52
9	8/6/2008	381-440	Avon Park Formation- dolostone with possible large fracture/ cavity	under	Butler (1998)	43.09	60
7	8/13/2008	486-555	Avon Park Formation- mudstone to wackestone with vuggy dolostone bed in bottom 7 feet of interval	under	Butler (1998)	43.23	26
8	8/27/2008	587-630	Avon Park Formation - dolostone with large vugs and some fractures	under	Butler (1998)	44.44	71
6	9/9/2008	661-710	Avon Park Formation- interbedded dolostone and packstone to grainstone with 10 foot bed of organics	under	Butler (1998)	45.63	63
10	9/15/2008	751-810	Avon Park Formation-packstone to wackestone	over	Butler (1998)	45.92	2
11	9/22/2008	845-890	Avon Park Formation - packstone to wackestone with large vugs and possible cavity	under	Butler (1998)	46.05	110
12	9/29/2008	906-975	Oldsmar Formation- interbedded dolostone and packstone to wackestone	over	Butler (1998)	46.22	с
13	10/2/2008	981-1,045	Oldsmar Formation- interbedded dolostone and packstone with cavity.	under	Butler (1998)	46.18	63
14	10/13/2008	1,076-1,155	Oldsmar Formation- interbedded dolostone and mudstone with weathered quartz	under	Butler (1998)	46.12	72
15	10/22/2008	1,186-1,230	Oldsmar Formation - dense fractured dolostone	under	Butler (1998)	45.98	73
16	11/19/2008	1,246-1,310	Oldsmar Formation- dense, fractured dolostone	under	Butler (1998)	45.44	170
17	12/16/2008	1,346-1,390	Oldsmar Formation- dolostone with some fractures and a possible void	under	Butler (1998)	44.93	120
18	1/29/2009	1,421-1,460	Oldsmar Formation- dense, fractured dolostone	under	Butler (1998)	43.47	220
19	2/12/2009	1,466-1,500	Oldsmar Formation - dense, fractured dolostone	under	Butler (1998)	43.28	320
20	7/22/2010	1,557-1,607	Cedar Keys Formation- dolostone, former packstone	critical	Butler (1998)	44.57	6
21	7/28/2010	1,637-1,687	Cedar Keys Formation- dense, non-porous anhydrite and dolostone	over	none	42.20	< 10 ⁻⁵

Confining Unit

A confining unit restricts the downward flow of water from land surface to the Upper Floridan aquifer. The clayey sediments composing the confining unit extend between 3 and 26 feet below land surface. The sediments are contained within the undifferentiated Hawthorn Group and the Ocala Limestone. Hydraulic testing and groundwater quality sampling were not conducted within the confining unit because it was dry at the time of exploration. Delineation of the unit was based on the lithologic character and observable porosity of the geologic materials.

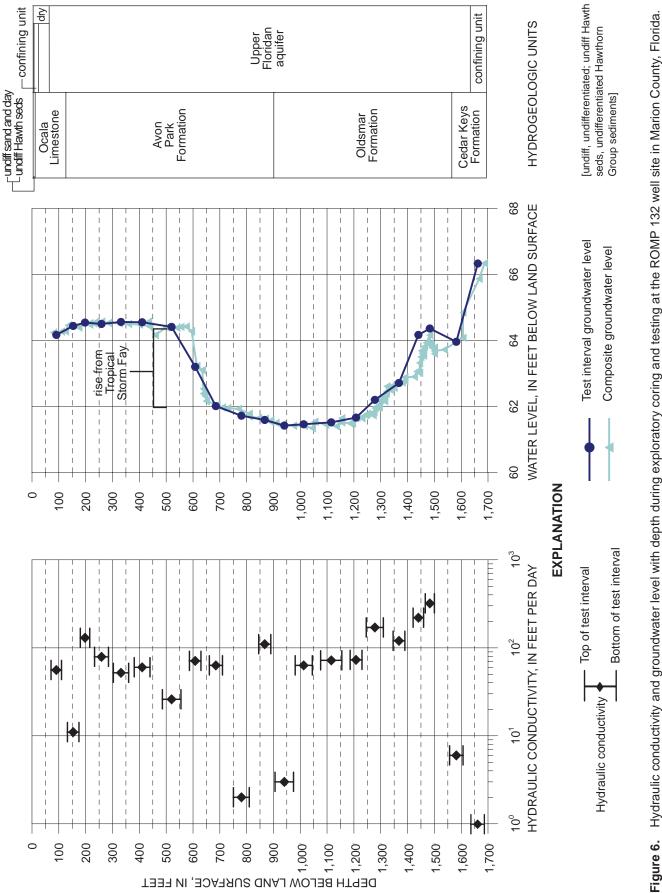
Abundant redoximorphic features were observed throughout the confining unit suggesting it follows similar saturated and non-saturated cycles as the sand sediments above. Mottles covered 50 percent of the sample recovered from 3 feet below land surface, and 100 percent of the sample recovered from between 10 to 11 feet below land surface. Below this depth, mottles were still present, but covered between 15 and 30 percent of the samples recovered. The confining unit is suspected to be leaky, allowing surface water to enter the Upper Floridan aquifer through the pathways described above.

Upper Floridan Aquifer

The Upper Floridan aquifer extends between 64 and 1,637 feet below land surface. The Upper Floridan aquifer is the only aquifer present in the Floridan aquifer system at the ROMP 132 well site.

The aquifer is contained within the permeable carbonates of the Ocala Limestone, Avon Park Formation, Oldsmar Formation, and Cedar Keys Formation. It is confined by clayey sediments above and dense anhydrite and dolostone below. Although the upper confining unit is suspected to be breached, the criteria to be considered unconfined is not met because the aquifer does not contain "continuous layers of materials of high intrinsic permeability extending the from land surface to the base of the aquifer" (Fetter, 2001).

The top of the aquifer, 64 feet below land surface, is the shallowest occurrence of groundwater at the ROMP 132 well site. During exploratory coring, loss of drilling circulation occurred 26 feet below land surface, indicating permeable sediments between 26 and 64 feet below land surface, how-ever, these sediments were dry at the time of exploration and are therefore not considered part of the Upper Floridan aquifer. The top of the Upper Floridan aquifer is at the potentiometeric surface, which varies thoughout the year. The depth to the top of the aquifer presented in this report is the potentiometric surface as it was encountered during exploratory coring.


Upper Floridan aquifer groundwater levels responded to rainfall events, most notably after the passing of Tropical Storm Fay over the site on August 22, 2008, which dropped over 6 inches of rain. The storm caused an abrupt rise in groundwater level when the core hole was at a depth of 600 feet below land surface (figure 6). A groundwater level recorder was installed in the core hole during a lull in coring activities. The core hole was 1,500 feet below land surface during this time. Upper Floridan aquifer groundwater level data were recorded between March 18, 2009, and July 6, 2010. Groundwater levels fluctuated 1.83 feet during this period. The fluctuation was consistent with the seasonal trend observed during exploratory coring and testing.

A total of 20 slug tests were conducted within the Upper Floridan aquifer during exploratory coring and testing (table 4 and figure 6). Hydraulic conductivity values varied throughout the aquifer; ranging between 2 and 320 feet per day. Many of the intervals with high hydraulic conductivity values contain fractured dolostone in which it is clear secondary porosity features are the main conduits for groundwater flow.

A constant rate aquifer performance test was conducted in the Upper Floridan aquifer for 24 hours between December 28, 2009, and December 29, 2009 (figure 7). Pumping at a rate of 2,900 gallons per minute began after 12 days of background groundwater level data collection. Groundwater level data were also collected 6 days after pumping ceased. Maximum drawdown in the Upper Floridan aquifer production well was approximately 4 feet, however the groundwater level data collected from this well was extremely noisy. The drawdown value of 4 feet was obtained from an average of data points collected during the pumping period. In addition to the production well, the three other wells open to the Upper Floridan aquifer were monitored during the test; the Upper Floridan aquifer monitor well, the exploratory core hole open to 1,500 feet below land surface, and the drilling water supply well. The Upper Floridan aquifer monitor well, exploratory core hole, and drilling water supply wells were 191 feet, 195 feet, and 486 feet away from the production well respectively (figure 3). All wells were partially penetrating. The maximum drawdown in both the exploratory core hole and the Upper Floridan aquifer monitor well was 1 foot. The maximum drawdown in the drilling water supply well was 0.3 feet. Field notes taken during the test are presented in Appendix G.

Groundwater discharged from the production well was transported by pipeline approximately 1,000 feet northeast of the site to a topographic depression. It was discovered that this low area contained a karst opening into the Upper Floridan aquifer. Discharge water reached this opening exactly 2 hours into the drawdown phase of the test. After 3 hours, the opening stopped taking water into the ground and a pool formed. No recharge effect was observed in the data. The flow rate of the discharge was measured with an impeller flow meter (which failed near the start of the test), and with a circular orifice weir. Orifice head pressure was measured and recorded digitally and used in the analysis of the drawdown data to correct for small variations in flow rate.

Analysis of the groundwater responses during pumping indicated that although the aquifer is considered confined based on the lithology encountered, it is not pressurized (it is non-artesian). The groundwater level was below the top of permeable sediments and dewatering of the limestone was

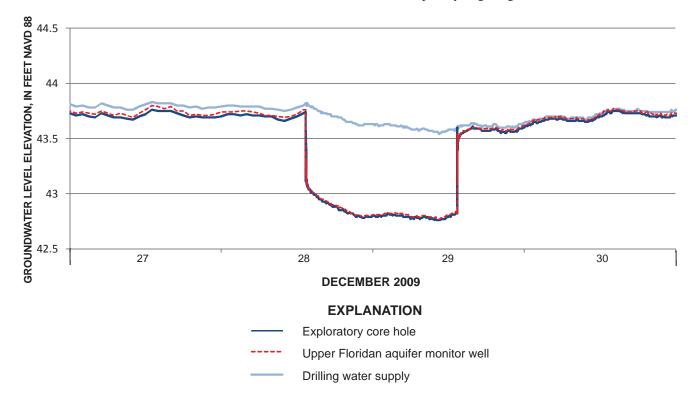
See table 4 for slug test and groundwater level data and Appendices E and F for slug test field notes and curve match solutions.

14 Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Plantation Well Site

observed during the test. The effects of partial penetration were negligible in the Upper Floridan aquifer monitor well and the exploratory core hole; however, well bore storage at the start of the test was a factor in aquifer response. Oscillatory response of groundwater levels was observed in all wells except the drilling water supply well both when the pump was turned on and when the pump was turned off.

Analysis of the test data was conducted with AQTE-SOLV® for Windows software. The analytical curve-match solutions are shown in Appendix H. Drawdown phase and recovery phase data were plotted together for analysis. The pretest and post test groundwater level data were used to calculate and remove a downward regional slope from the test data. The slope was $-5x10^{-6}$ when time was plotted in minutes.

Initially, the Theis (1935)/Hantush (1961) solution was used to estimate transmissivity (T) and storativity (S) from groundwater level data collected in the Upper Floridan aquifer monitor well, exploratory core hole, and drilling water supply well. Each data set was analyzed individually. It was found the Upper Floridan aquifer monitor well and exploratory core hole were not far enough away from the production well and produced unrealistically low estimates of storativity. Additionally, the oscillatory response of the groundwater levels at the start and end of pumping created difficulty in the analysis. The drilling water supply well, which was much farther away from the production well, saw a relatively small amount of groundwater level change during pumping. As a result, the groundwater level data from this well was noisy and analysis was questionable, although a much more realistic estimate for storativity was seen. While each of the groundwater level responses from the three wells by themselves could not produce reliable estimations, when they were combined and analyzed together, the negative influences were muted. The Cooper Jacob (1946) straight line analysis of all three wells together produced a reliable transmissivity value and was not as influenced by the early and late time data noise as were other analysis methods. Transmissivity of the Upper Floridan aquifer was estimated at:


T = 380,000 square feet per day

A distance-drawdown analysis of all three groundwater level responses produced a similar transmissivity value, and the transmissivity values from the individual Theis (1935)/Hantush (1961) analyses were of the same order of magnitude.

It was not possible to pump the aquifer at a rate high enough rate to create a curve for the reliable estimation of storativity at this time. Additionally, the effect of dewatering of limestone on the estimation of storativity is not well understood, and therefore a value is not reported here. A leakance coefficient could not be estimated because the sediments above the Upper Floridan aquifer were dry.

Confining Unit

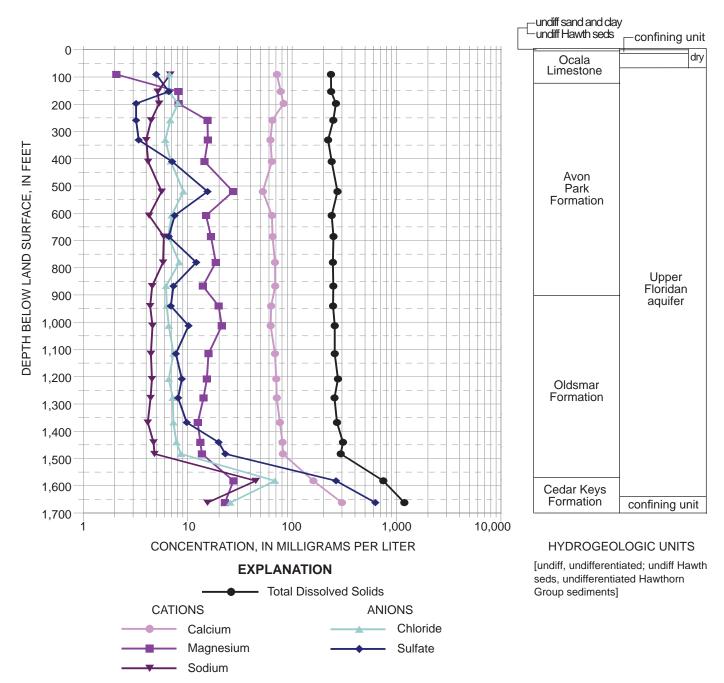
The lower confining unit of the Upper Floridan aquifer was the deepest hydrogeologic unit encountered at the ROMP

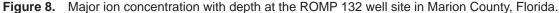
Figure 7. Hydrograph of groundwater levels in three wells before, during, and after the Upper Floridan aquifer performance test at the ROMP 132 well site in Marion County, Florida.

132 site. The top of the unit is 1,637 feet below land surface. The bottom of the unit was not reached during exploration. The unit is contained within the nonpermeable, anhydrite and cryptocrystalline (crystals not visible under x30 magnification) dolostone layers of the Cedar Keys Formation.

The groundwater level in the confining unit was 2.4 feet lower than the groundwater level in the Upper Floridan aquifer. Some of this level difference can be accounted for by the increase in total dissolved solids, which results in a higher groundwater density in this unit.

A slug test was attempted in the confining unit; however, the groundwater level response was so slow, the signal to noise ratio of the data rendered the test unusable (noise is created from temperature fluctuations throughout the day and night which change the resistance in the wires connecting the pressures transducer to the data logger). The test was initiated with a physical slug that displaced the groundwater level 1.6 feet above the static level. After 4 days, the groundwater level still had not returned to a static condition and the test was ended. The hydraulic conductivity is considered to be essentially zero.


Groundwater Quality


Twenty-one groundwater samples were collected from discrete intervals in the ROMP 132 core hole. Twenty of the samples were from the Upper Floridan aquifer, and the last sample was from the confining unit below the Upper Floridan aquifer. These 21 discrete intervals correspond to the slug tested intervals of the same number. All samples were prepared and sent to the District laboratory after field testing. Field notes taken during the collection of each groundwater quality sample are presented in Appendix I. The results of the laboratory and field analyses are given in Appendix J. The laboratory values for alkalinity, chloride, total dissolved solids, sulfate, silica, pH, and conductivity, of sample numbers 6, 10, 11, 12, and 14, should be considered with caution as these samples were stored improperly prior to analysis.

Groundwater in the Upper Floridan aquifer at the ROMP 132 well site is fresh, meaning total dissolved solids are below 1,000 milligrams per liter (Freeze and Cherry, 1979). Additionally, all samples except the one collected between 1,557 and 1,607 feet below land surface, met the United States Environmental Protection Agency's (USEPA) National Secondary Drinking Water Regulation standards (U.S. Environmental Protection Agency, 2009) for the constituents tested. The major dissolved inorganic constituents, or constituents with concentrations greater than 1.0 milligram per liter, included chloride, sulfate, calcium, magnesium, and sodium. The minor dissolved inorganic constituents, or the constituents with concentrations less than 1.0 milligram per liter, for samples collected between 71 and 1,500 feet below land surface, included iron, potassium, and strontium. Other minor trace constituents may have been present in the

samples, but tests were not conducted to identify them. The sample collected between 1,557 and 1,607 feet was from an interval close in proximity to the underlying confining unit, and therefore this sample contained elevated concentrations of all analyzed constituents. Major ion concentrations trends with depth are shown in figure 8. The charge balance between anions and cations for all but one of the samples (collected between 751 and 810 feet below land surface, and on which the analysis was conducted after improper sample storage) had errors below 5%. These errors indicate that all major, and most minor and trace dissolved constituents were accounted for during laboratory analysis. The water type for samples collected between 71 and 1,500 feet below land surface, was calcium bicarbonate, meaning the relative abundance of the dominant cation, calcium, was over 50%, and the relative abundance of the dominant anion, bicarbonate, was over 50%. A water type of calcium bicarbonate is typical for shallow carbonate aquifers such as the Upper Floridan aquifer. Groundwater of this type, where the total dissolved solids are low and the dominate anion is bicarbonate, is characterized by active flushing through relatively well-leached rocks (Freeze and Cherry, 1979). The water type for the sample collected between 1,557 and 1,607 feet below land surface was calcium sulfate. Groundwater of this type indicates an interval with less active circulation, as the groundwater composition evolves chemically toward deepwater (Freeze and Cherry, 1979). This chemical evolution also is shown in the Piper diagram (figure 9).

As with the slug test, groundwater quality sampling within the confining unit below the Upper Floridan aquifer was problematic. It is questionable how well the sample represents groundwater within the confining unit. A sample was collected from the interval between 1,637 and 1,687 feet below land surface using a nested bailer attached to the packer. The confining unit produced very little groundwater; therefore, the pump had to be turned on and off to keep it from overheating. To avoid equipment damage, only enough groundwater was pumped to fill the bailer once. This sampling is contrary to normal practice where the bailer would have been filled three times to ensure a representative sample was collected before returning to land surface. Field analysis of the groundwater sample produced a specific conductivity value that was lower than the specific conductivity value measured from the drilling discharge. It is possible the groundwater collected from the confining unit contained water pumped into the core hole during development. This pumped water could not flow out of the core hole once development ended. Laboratory analysis of the groundwater sample indicated elevated concentrations of all chemical constituents in comparison to the samples collected from the Upper Floridan aquifer. The sample does not meet the USEPA's National Secondary Drinking Water Regulation standards. The water type was calcium sulfate. The change to sulfate anion dominance, from bicarbonate anion dominance (seen in samples from the Upper Floridan aquifer), results from the rock-water interaction with evaporates in the confining unit.

Summary

The ROMP 132 – Blitch Plantation well site is located in west-central Marion County, and is part of the ROMP 10-mile grid network and the Northern District Water Resources Assessment Project. A major objective was to determine the geographic extent of middle confining units I and II and the Lower Floridan aquifer, none of which were present at this site. The Upper Floridan aquifer is the only aquifer in the Floridan aquifer system at the ROMP 132 well site.

Geohydrologic data were collected to characterize the geologic and hydrologic units at the site. This characterization

included collecting lithologic core samples, hydraulic testing on isolated intervals, groundwater quality sampling, geophysical logging, and aquifer performance testing.

The ROMP 132 well site was developed in four phases: shallow exploratory coring and testing, well construction, aquifer performance testing, and deep exploratory coring and testing. Exploratory coring was conducted from land surface to 1,727 feet below land surface by two District crews. Two wells were constructed in the Upper Floridan aquifer by Diversified Drilling Corporation; the first a temporary production well, the second a permanent monitor well. Finally, an

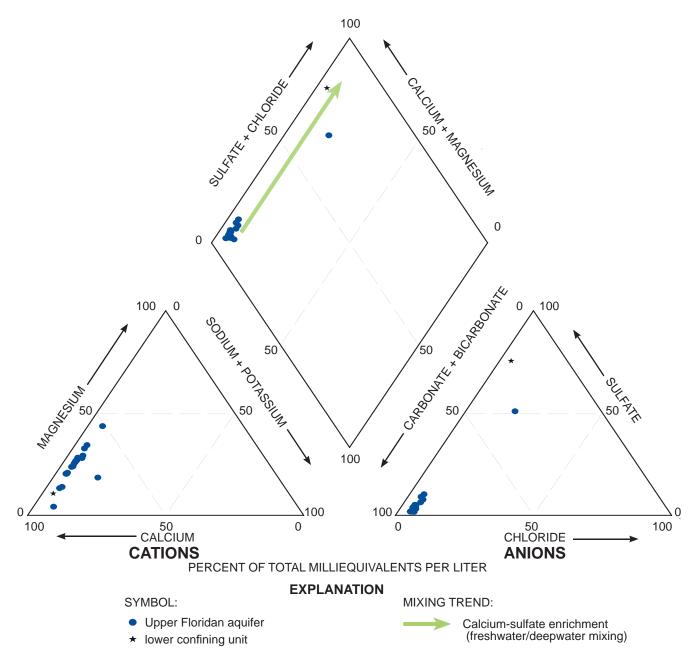


Figure 9. Piper diagram of groundwater quality samples collected at the ROMP 132 well site in Marion County, Florida.

aquifer performance test was conducted in the Upper Floridan aquifer.

The temporary production well was constructed with 16-inch steel casing extending from land surface to 129 feet below land surface, 14-inch steel casing extending from 129 to 150 feet below land surface, and a 12-inch open hole interval extending from 150 to 1,000 feet below land surface. The well was abandoned after aquifer performance testing. The Upper Floridan aquifer monitor well was completed with 4-inch Schedule 40 PVC casing extending 239 feet below land surface, and an open hole interval extending from 239 to 994 feet below land surface. This well remains at the site and will be used for long-term groundwater level and/or groundwater quality monitoring.

The geologic units encountered include, in ascending order, the Cedar Keys Formation, Oldsmar Formation, Avon Park Formation, Ocala Limestone, undifferentiated Hawthorn Group sediments, and undifferentiated sand and clay. The Cedar Keys Formation extends between 1,557 feet below land surface and the total depth of exploration of 1,727 feet below land surface. The bottom of the formation was not reached during exploration. The Oldsmar Formation extends between 900 and 1,557 feet below land surface. The Avon Park Formation extends between 125 and 900 feet below land surface. The Ocala Limestone extends between 11 and 125 feet below land surface. The undifferentiated Hawthorn Group sediments extend between 6 and 11 feet below land surface. Finally, undifferentiated sand and clay sediments extend between land surface and 6 feet below land surface.

The hydrogeologic units encountered include, in descending order, a confining unit, the Upper Floridan aquifer, and a confining unit. Groundwater was first encountered 64 feet below land surface during exploration. A confining unit is present between 3 and 26 feet below land surface. The Upper Floridan aquifer extends between 64 and 1,637 feet below land surface. Finally, the lower confining unit of the Upper Floridan aquifer extends between 1,637 feet below land surface and the total depth of exploration of 1,727 feet below land surface. The bottom of this unit was not reached during exploration.

A constant rate aquifer performance test was conducted for 24 hours in the Upper Floridan aquifer. Transmissivity of the Upper Floridan aquifer was calculated at 380,000 square feet per day. Storativity could not be reliably estimated from the data. Leakance could not be estimated because the sediments above the Upper Floridan aquifer were dry.

The groundwater quality in the Upper Floridan aquifer meets the U.S. Environmental Protection Agency's National Secondary Drinking Water Regulation standards to a depth of 1,500 feet below land surface. Groundwater samples to this depth were of the calcium bicarbonate type as is typical for carbonate aquifers. Below 1,500 feet below land surface, the concentrations of all chemical constituents were elevated above drinking water standard concentrations. The water type of these samples was calcium sulfate; resulting from the rockwater interaction with the evaporates in the confining unit below the Upper Floridan aquifer.

References

- Arthur, J.D., Fischler, C., Kromhout, C., Clayton, J.M., Kelley, M., Lee, R.A., O'Sullivan, M., Green, R.C., and Werner, C.L., 2008, Hydrogeologic Framework of the Southwest Florida Water Management District: Florida Geological Survey Bulletin No. 68, 104 p.
- Boggess, D.M., and Watkins, F.A., Jr., 1986, Surficial aquifer system in eastern Lee County, Florida: U.S. Geological Survey Water-Resources Investigations Report 85-4161, 59 p.
- Bush, P. W., 1982, Predevelopment Flow in the Tertiary limestone aquifer, southeastern United States; A Regional Analysis from Digital Modeling: U.S. Geological Survey Water-Resources Investigations Report 82-905, 56 p.
- Butler, J.J., Jr., 1998, The Design, Performance, and Analysis of Slug Tests, Lewis Publishers, Boca Raton, Fl., 252 p.

Clarke, W.E., Musgrove, R.M., Menke, G.C., and Cagle, J.W., Jr., 1964, Water resources of Alachua, Bradford, Clay, and Union Counties, Florida: Florida Geological Survey Report of Investigations 35, 170 p.

- Cooper, H.H. and C.E. Jacob, 1946, A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.
- Dunham, R.J., 1962, Classification of Carbonate Rocks According to Texture, in Ham, W.E. (ed.), Classification of Carbonate Rocks. Amer. Assoc. Petroleum Geologists, Mem. No. 1, Tulsa, Okla., 279 p. 108-121.
- Faulkner, Glen L., 1973. Geohydrology of the Cross-Florida Barge Canal Area with Special Reference to the Ocala Vicinity: U.S. Geological Survey Water-Resources Investigations Report 1-73, 116 p.
- Fetter, C. W., 2001, Applied Hydrogeology, Fourth Edition, Prentice Hall, Upper Saddle River, NJ, 598 p.
- Freeze, R. A., and Cherry J.A., 1979, Groundwater, Prentice Hall, Englewood Cliffs, NJ, 604 p.
- Griffith, Glenn et. al., 1997, Lake Regions of Florida: United States Environmental Protection Agency Report - No 97/127, 2 map sheets.
- Hantush, M.S., 1961a., Drawdown around a partially penetrating well, Jour. of the Hyd. Div., Proc. of the Am. Soc. of Civil Eng., v. 87, no. HY4, p. 83-98.
- Hantush, M.S., 1961b., Aquifer tests on partially penetrating wells, Jour. of the Hyd. Div., Proc. of the Am. Soc. of Civil Eng., v. 87, no. HY5, p. 171-194.
- Hyder, Z., Butler, J. J. Jr., C.D. McElwee, and W. Liu, 1994. Slug tests in partially penetrating wells, Water Resources Research, vol. 30, no. 11 p. 2945-2957.
- Jackson, J.A., 1997, Glossary of Geology, Fourth Edition, American Geological Institute, Alexandria, Va., 769 p.
- Laney, R. L., and Davidson, C. B., 1986, Aquifer-Nomenclature Guidelines: U.S. Geological Survey Open File Report 86-534, 60 p.
- Leve, G.L., 1966, Ground water in Duval and Nassau Counties, Florida: Florida Geological Survey Report of Investigations 43, 91 p.
- Lichtler, W.F., 1960, Geology and ground-water resources of Martin County, Florida: Florida Geological Survey Report of Investigations 23, 149 p.
- Miller, J. A., 1982, Geology and configuration of the base of the Tertiary limestone aquifer system, southeastern United States: U.S. Geological Survey Water-Resources Investigations Report 81-1176, 1 map sheet.

Miller, J.A. 1986. Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina: U.S. Geological Survey Professional Paper 1403-B, 91 p.

Miller, W.L., 1980, Geologic aspects of the surficial aquifer in the Upper East Coast planning area, southeast Florida: U.S. Geological Survey Water-Resources Investigations Report 80-586, scale 1:62,500, 2 sheets.

North American Stratigraphic Code (2005), North American Commission on Stratigraphic Nomenclature, 2005, American Association of Petroleum Geologists Bulletin, v. 89, no. 11, p. 1547-1591.

Parker, G.G., and others, 1955, Water resources of southeastern Florida: U.S. Geological Survey Water-Supply Paper 1255, 965 p.

The Rock-Color Chart Committee, 1984, Rock-Color Chart, Geological Society of America, Huyskes-Enschede, Netherlands, 11 p.

Reese, R.S., and Richardson, E., 2008, Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida: U.S. Geological Survey Scientific Investigations Report 2007-5207, 60 p., 4 pls., plus apps. (on CD).

Stringfield, V.T., 1936, Artesian water in the Floridan peninsula: U.S. Geological Survey Water-Supply Paper 773-C, p. C115-C195.

Stringfield, V. T., 1966, Artesian water in Tertiary limestone in the Southeastern States: U.S. Geological Survey Professional Paper 517, 226 p.

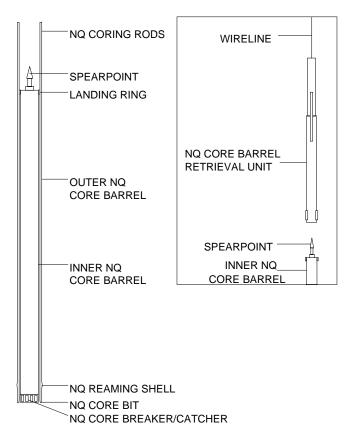
Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, p. 519-524.

U.S. Environmental Protection Agency, 2009, 2009 Edition of the Drinking Water Standards and Health Advisories: U.S. Environmental Protection Agency Office of Water EPA 822-R-09-011, 18 p.

White, W.A., 1970, The Geomorphology of the Florida Peninsula: State of Florida Department of Natural Resources Bureau of Geology Bulletin No. 51, 164 p.

Winston, G. O., 1994, The Paleogene of Florida, Vol. 3, Lithostratigraphy of the Cedar Keys Formation of Paleocene and Upper Cretaceous Age- Peninsular Florida and Environs, Miami Geological Society, 29 p. Wolansky, R.M., 1978, Feasibility of water-supply development from the unconfined aquifer in Charlotte County, Florida: U.S. Geological Survey Water-Resources Investigations Report 78-26, 34 p.

Wyrick, G.G., 1960, Ground-water resources of Volusia County, Florida: Florida Geological Survey Report of Investigations 22, 65 p.


Appendix A. Methods of the Regional Observation and Monitor-well Program

The Southwest Florida Water Management District (District) collects the majority of the hydrogeologic data during the exploratory core drilling phase of the project. Lithologic samples are collected during the core drilling process. Hydraulic and water quality data are collected primarily during packer tests as the core hole is advanced. Geophysical logging is conducted on the core hole providing additional hydrogeologic data. After well construction, an aquifer performance test (APT) is conducted on each of the major freshwater aquifers or producing zones encountered at the project site. These data are uploaded into the District's Water Management Information System (WMIS).

Collection of Lithologic Samples

The District conducts hydraulic rotary core drilling, referred to as diamond drilling, with a Central Mining Equipment (CME) 85 core drilling rig and a Universal Drilling Rigs (UDR) 200D LS. The basic techniques involved in hydraulic rotary core drilling are the same as in hydraulic rotary drilling (Shuter and Teasdale, 1989). The District applies a combination of HW and NW gauge working casings along with NQ and NRQ core drilling rods, associated bits, and reaming shells from Boart Longyear®. The HW and NW working casings are set and advanced as necessary to maintain a competent core hole. The NQ and NRQ size core bits produce a nominal 3-inch hole. The HW and NW working casings and NQ coring rods are removed at the end of the project. Details on the core drilling activities are recorded on daily drilling logs completed by the District's drilling crew and hydrologists.

Recovery of the core samples is accomplished using a wireline recovery system (fig. A-1). The District's drilling crew uses the Boart Longyear® NQ wireline inner barrel assembly. This system allows a 1.87-inch by 5-foot section and a 1.99-inch by 10-foot section of core to be retrieved with the CME 85 rig and UDR 200D LS rig, respectively. The core is retrieved without having to remove the core rods from the core hole. Grab samples of core hole cuttings are collected and bagged where poor core recovery occurs because of drilling conditions or where the formation is unconsolidated or poorly indurated. The core samples are placed in core boxes, depths are marked, and recovery estimates are calculated. Core descriptions are made in the field using standard description procedures. Rock color names are taken from the "Rock-Color Chart" of the National Research Council (Goddard and others, 1948). The textural terms used to characterize carbonate rocks are based on the classification system of Dunham (1962). The core samples are shipped to the Florida Geological Survey for detailed lithologic descriptions of core,

Figure A-1. Boart Longyear[®] NQ Wireline Coring Apparatus.

cuttings, and unconsolidated sediments. All lithologic samples are archived at the Florida Geological Survey in Tallahassee, Florida.

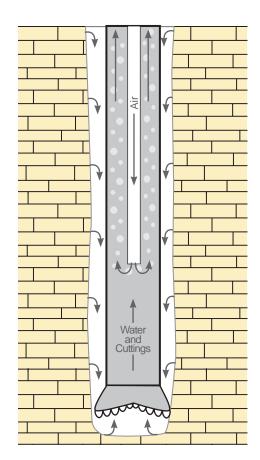
Unconsolidated Coring

Various methods exist for obtaining core of unconsolidated material, which is extremely difficult as compared to rock coring (Shuter and Teasdale, 1989). To ensure maximum sample recovery, the District drilling crew utilizes a punch shoe adapter on the bottom of the inner barrel along with an unconsolidated core catcher. The punch shoe extends the inner barrel beyond the bit allowing collection of the sample prior to disturbance by the bit or drilling fluid. A variety of bottom-discharge bits are used during unconsolidated coring. A thin bentonite mud may be used to help stabilize the unconsolidated material.

Rock Coring

During rock coring, the District drilling crew utilizes HW and NW working casings as well as permanent casings to stabilize the core hole. NQ core drilling rods and associated products are employed during the core drilling process. Core drilling is conducted by direct-circulation rotary methods using fresh water for drilling fluid. Direct water is not effective in removing the cuttings from the core hole, therefore, a reverse-air (air-lift) discharge method (fig. A-2) is used to develop the core hole every 20 feet or as necessary. The District typically uses face-discharge bits for well indurated rock core drilling.

Formation Packer Testing


Formation (off-bottom) packer testing allows discrete testing of water levels, water quality, and hydraulic parameters. A competent core hole is necessary for packer testing, meaning unconsolidated sediments and weathered limestone cannot be tested using this technique. The packer assembly (fig. A-3) is utilized by raising the NQ coring rods to a predetermined point, lowering the packer to the bottom of the rods using a combination cable/air inflation line, and inflating the packer with nitrogen gas. This process isolates the test interval, which extends from the packer to the total depth of the core hole. Sometimes, the working casing may be used in place of the packer assembly. Test intervals are selected based on a regular routine of testing or at any distinct hydrogeologic change that warrants testing.

Collection of Water Level Data

Water level data is collected daily before core drilling. Additionally, water levels are recorded during each formation packer test after the necessary equilibration time. Equilibration is determined when the change in water level per unit time is negligible. Water levels are measured using a Solinst[®] water level meter. The water level is measured relative to an arbitrary datum near land surface which is maintained throughout the project. These data provide a depiction of water level with core hole depth, although they are normally collected over several months and will include temporal variation.

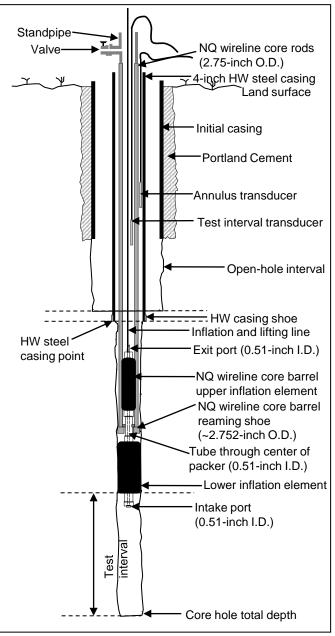
Collection of Water Quality Data

Water quality samples are collected during each formation packer test. Sampling methods are consistent with the "Standard Operating Procedures for the Collection of Water Quality Samples" (Water Quality Monitoring Program, 2009). The procedure involves isolating the test interval with the offbottom packer (fig. A-3) and reverse-air pumping the water in the NQ coring rods. To ensure a representative sample is

Reverse-air pumping

Reverse-air pumping allows cuttings to be removed without the introduction of man-made drilling fluids. As air bubbles leave the airline and move up inside the rods, they expand and draw water with them, creating suction at the bit. Groundwater comes from up-hole permeable zones and is natural formation water. Suction at the bit draws water and drill cuttings up the rods to be discharged at the surface.

Figure A-2. Reverse-air pumping


collected, three core hole volumes of water are removed and temperature, pH, and specific conductance are monitored for stabilization using a YSI[®] multi-parameter meter. Samples are collected either directly from the air-lift discharge point at land surrface, with a wireline retrievable stainless steel bailer (fig. A-4), or with a nested bailer. When sampling a poorly producing interval, the purge time may be substantial. The nested bailer is an alternative that is attached directly to the packer orifice thereby reducing the volume of water to be evacuated from the core hole because it collects water directly from the isolated interval.

The water quality sample is collected using a clean polypropylene beaker. A portion of the sample is bottled according to standard District procedure for laboratory analysis (SWF-WMD, 2009). Two bottles, one 250 milliliter and one 500 milliliter, are filled with water filtered through a 0.45-micron filter. Another 500 milliliter bottle is filled with unfiltered water. A Masterflex® console pump is used to dispense the water into the bottles. The sample in the 250 milliliter bottle is acidified with nitric acid to a pH of 2 in order to preserve metals for analysis. The remainder of the sample is used to measure field parameters including specific conductance, temperature, pH, and chloride and sulfate concentrations. Temperature and specific conductance are measured using a YSI[®] multi-parameter handheld meter. Chloride and sulfate concentrations, and pH are analyzed with a YSI[®] 9000 photometer. The samples are delivered to the District's environmental chemistry laboratory for additional analysis. A "Standard Complete" analysis that includes pH, calcium, chloride, ion balance, iron, magnesium, potassium, silica, sodium, strontium, specific conductance, sulfate, total dissolved solids (TDS), and total alkalinity is performed on each set of samples (SWFWMD, 2009). Chain of Custody forms are used to track the samples.

The analysis of the water quality data includes the evaluation of relative ion abundance and ion or molar ratios, and the determination of water type(s). The laboratory data are used to calculate milliequivalents per liter (meq/L) and percent meq/L. Using the criteria of 50 percent or greater of relative abundance of cations and anions, the water type for each sample is determined (Hem, 1985). The data is plotted on a Piper diagram to give a graphical depiction of the relative abundance of ions in an individual sample (Domenico and Schwartz, 1998) as well as how the individual samples compare to each other. Select ion ratios are calculated for each sample to further evaluate chemical similarities or differences among waters and to help explain why certain ions change with depth. Field pH is used in analyses because it is more likely to represent the actual conditions in the water since pH is sensitive to environmental changes (Driscolll, 1986; Fetter, 2001). Additionally, total alkalinity is used as bicarbonate concentration because hydroxyl ions generally are insignificant in natural groundwater and carbonate ions typically are not present in groundwater with a pH less than 8.3 (Fetter, 2001).

Collection of Slug Test Data

Hydraulic conductivity is estimated by conducting slug tests. During slug testing, the static water level in the test interval is suddenly displaced, either up or down, and the water level response is recorded as it returns to a static state. Typically, the slug tests are conducted using the off-bottom packer assembly to isolate test intervals as the core hole is advanced. KPSI® pressure transducers are used to measure the water level changes in the test interval and the annulus between the HW casing and the NQ coring rods. The annulus pressure transducer is used as a quality control device to detect water level changes indicative of a poorly seated packer or physical connection (i.e. fractures or very permeable rocks) within the formation. A third pressure transducer is used to measure air pressure during pneumatic slug testing. All pressure transducer output is recorded on a Campbell Scientific, Inc CR800 datalogger. Prior to all slug tests, the test interval is thoroughly developed.

Figure A-3. Formation (off-bottom) packer assembly deployed in the core hole.

Slug tests can be initiated several ways. The primary methods used by the District are the pneumatic slug method and the drop slug method. Core hole conditions and apparent formation properties dictate which method is used. The pneumatic slug method is used for moderate to high hydraulic conductivity formations because it provides near instantaneous slug initiation. The pneumatic slug method uses a NQ rod modified to include a pressure gauge and regulator, and an electronic or manual valve. The opening is sealed with compression fittings. Air pressure is used to depress the static water level. The water level is monitored for equilibration. Once it returns to the initial static water level the test is initiated. The electronic or manual valve is opened to release the air pressure causing the water level to rise (rising head test).

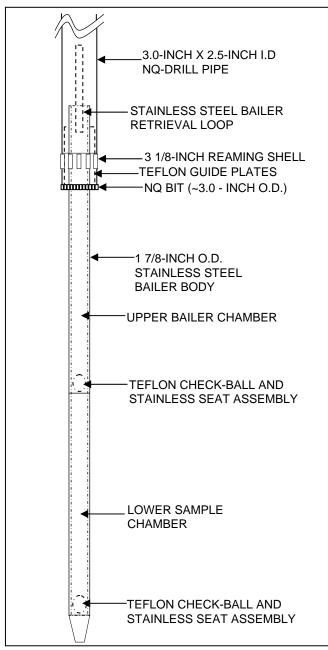


Figure A-4. Diagram of the wireline retrievable bailer.

The water level is recorded until it returns to the initial static water level. The drop slug method is used for low hydraulic conductivity formations. This test initiation method is slower than the pneumatic method because the slug has to travel down the core hole before reaching the test interval. The drop slug method involves adding a predetermined volume of water into the NQ rods raising the static water level. A specially designed PVC funnel fitted with a ball valve placed over the NQ rods is used to deliver the water. The water level is recorded until the raised level falls (falling head test) back to the static level.

Several quality assurance tests are conducted in the field in order to identify any potential sources of error in the slug test data. The quality assurance tests include evaluation of the discrepancy between the expected and observed initial displacements (Butler, 1998), evaluation of the normalized plots for head dependence and evolving skin effects, and the evaluation of the annulus water level for movement. Lastly, an estimate of the hydraulic conductivity value is made using AQTESOLVE® (Duffield, 2007) software by applying the appropriate analytical solution to the data.

Slug tests in which the formation packer assembly is used have a source of error resulting from the orifice restriction (fig. A-3). During the slug test, water must move through the NQ coring rods that have an inner diameter of 2.38-inches, then through the orifice on the packer assembly that has an inner diameter of 0.75-inch, and finally through the core hole that has a diameter of approximately 3-inches. The error associated with the orifice restriction is manifested as head dependence in the response data. It can be seen when multiple tests are conducted on the same test interval with varying initial displacements. The error associated with the orifice restriction results in an underestimation of the hydraulic conductivity values. In order to reduce the error associated with the orifice restriction, a spacer in introduced into the zone of water level fluctuation thereby reducing the effective casing radius from 1.19 inches to 0.81 inch. A second technique used to minimize the effects caused by the orifice restriction is the use of initial displacements (slugs) of less than 1.5-feet in height. Also, if the working casing is used instead of the packer, the error is eliminated.

Geophysical Logging

Geophysical logs are useful in determining subsurface geologic and groundwater characteristics (Fetter, 2001). Geophysical logs provide three major types of information from water wells: hydrologic (water quality, porosity, and flow zone detection), geologic (lithology, formation delineation), and physical characteristics (depth, diameter, casing depth, texture of well bore, and integrity of well construction).

Geophysical logging entails lowering the geophysical tool into the core hole or monitor well on a wireline, and measuring the tool's response to the formation and water quality as the tool is moved up the hole. Core hole geophysical logs are run during various stages of core drilling. When feasible, geophysical logs are run prior to casing advancements, while the core hole is still open to the formation.

The District uses Century[®] geophysical logging equipment. The three types of geophysical probes used are the caliper/gamma, induction, and multifunction. The multifunction tool measures natural gamma-radiation [GAM (NAT)], spontaneous potential (SP), single-point resistivity (RES), short [RES(16N)], long [RES(64N)] normal resistivity, fluid temperature (TEMP) and fluid specific conductance (SP COND). Each log type is explained below.

Caliper (CAL)

The caliper tool is used to measure the diameter of the borehole and can identify deviation from the nominal borehole diameter and, in turn, locate cavities, washouts, and build-up. This log is useful for determining casing placement depths because competent, well indurated, layers can be located. The caliper log also aids in volumetric calculations of material such as cement, gravel, sand, and bentonite needed during well construction and abandonment when installing casing and filling open hole intervals.

Gamma (GAM[NAT])

The gamma log records the amount of natural gamma radiation emitted by the materials surrounding the borehole. Natural gamma radiation is emitted from decaying radioisotopes from certain geologic materials. Some of these materials include low permeability clays that trap radioactive potassium isotopes as they migrate with groundwater, organic deposits, and phosphates. Gamma radiation can be measured through PVC and steel casing, although steel casing does appreciably attenuate the signal. Comparing gamma profiles from distant wells often allows stratigraphic units to be correlated over considerable distances because the materials that generate gamma radiation are often deposited over large geographic areas.

Spontaneous Potential (SP)

Spontaneous potential logs measure the electrical potential (millivolts) that result from chemical and physical changes at the contacts between different types of geological materials (Driscoll, 1986). They must be run in fluid-filled, uncased boreholes, and function best when the fluid in the borehole is different from that in the formation (such as mud versus water, or saltwater versus freshwater). Spontanteous potential logs are useful in identifying contacts between different lithologies and stratigraphic correlation.

Single-Point Resistance (RES)

Single-point resistance logs measure the electrical resistance, in ohms, of rocks and fluids using an in-hole electrode and a surface electrode. The log must be run in a fluid-filled, uncased borehole, and is used for geologic correlation, such as determining bed boundaries, changes in lithology, and identification of fractures in resistive rocks (Keys and MacCary, 1971).

Short-Normal (RES [16N]) and Long-Normal (RES [64N])

Short-normal and long-normal resistivity logs measure the electrical resistivity of the surrounding rocks and water by using two electrodes. The 16 and 64 refers to the space, in inches, between the potential electrodes on the logging probe. The short-normal curve indicates the resistivity of the zone close to the borehole and the long-normal has more spacing between the electrodes, therefore measures the resistivity of materials farther away from the borehole (Fetter, 2001). Short-normal and long-normal logs are useful in locating highly resistive geologic materials such as limestone, dolostone, and pure, homogenous sand and low resistivity materials like clay or clayey, silty sand. Also, the logs indicate water quality changes because fresh water has high resistivity whereas poor quality water has low resistivity. Resistivity logs must be run in fluid-filled, open boreholes.

Temperature (TEMP)

Temperature logs record the water temperature in the borehole. Temperature variations may indicate water entering or exiting the borehole from different aquifers or zones. Thus, the log is useful in locating permeable zones. The log must be run in fluid-filled boreholes.

Specific Conductance (SP COND)

Specific Conductance logs measure the capacity of borehole fluid to conduct an electrical current with depth. The log indicates the total dissolved solids concentration of the borehole fluid. The specific conductance log may be useful in determining permeable zones because zones of increased inflow or outflow may show a change in water quality.

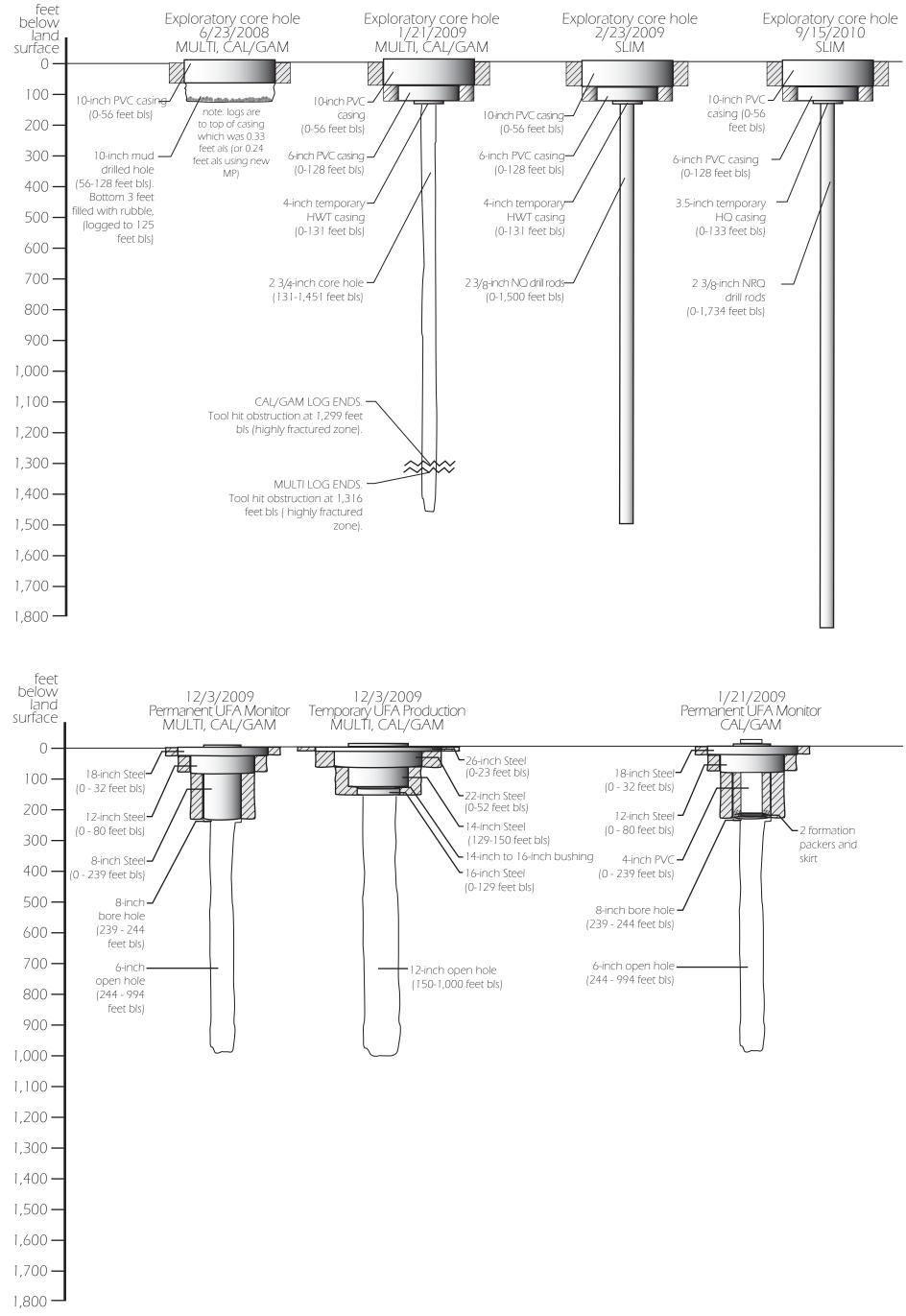
Aquifer Performance Tests

An APT is a controlled field experiment conducted to determine the hydraulic properties of water-bearing units (Stallman, 1976). APTs can be either single-well or multiwell and may partially or fully penetrate the aquifer. An APT involves pumping the aquifer at a known rate and monitoring the water level response. The general procedure, applied by the District, for conducting an APT involves design, field observation, and data analysis. Test design is based on the geologic and hydraulic setting of the site, such the aquifer thickness, probable range in transmissivity and storage, the presence of uncontrolled boundaries (sources/sinks), and any practical limitations imposed by equipment. Field observations of the discharge and water levels are recorded. The District measures the discharge rate using an impeller meter and circular orifice weir. The District measures water levels using pressure transducers and an electric tape. All the recording devices are calibrated and traceable to the National Institute of Standards and Technology. Data analysis includes first making estimates of drawdown observed during the test and then using analytical and numerical methods to estimate hydraulic properties of the aquifer and adjacent confining units.

Single-Well Aquifer Pumping Test

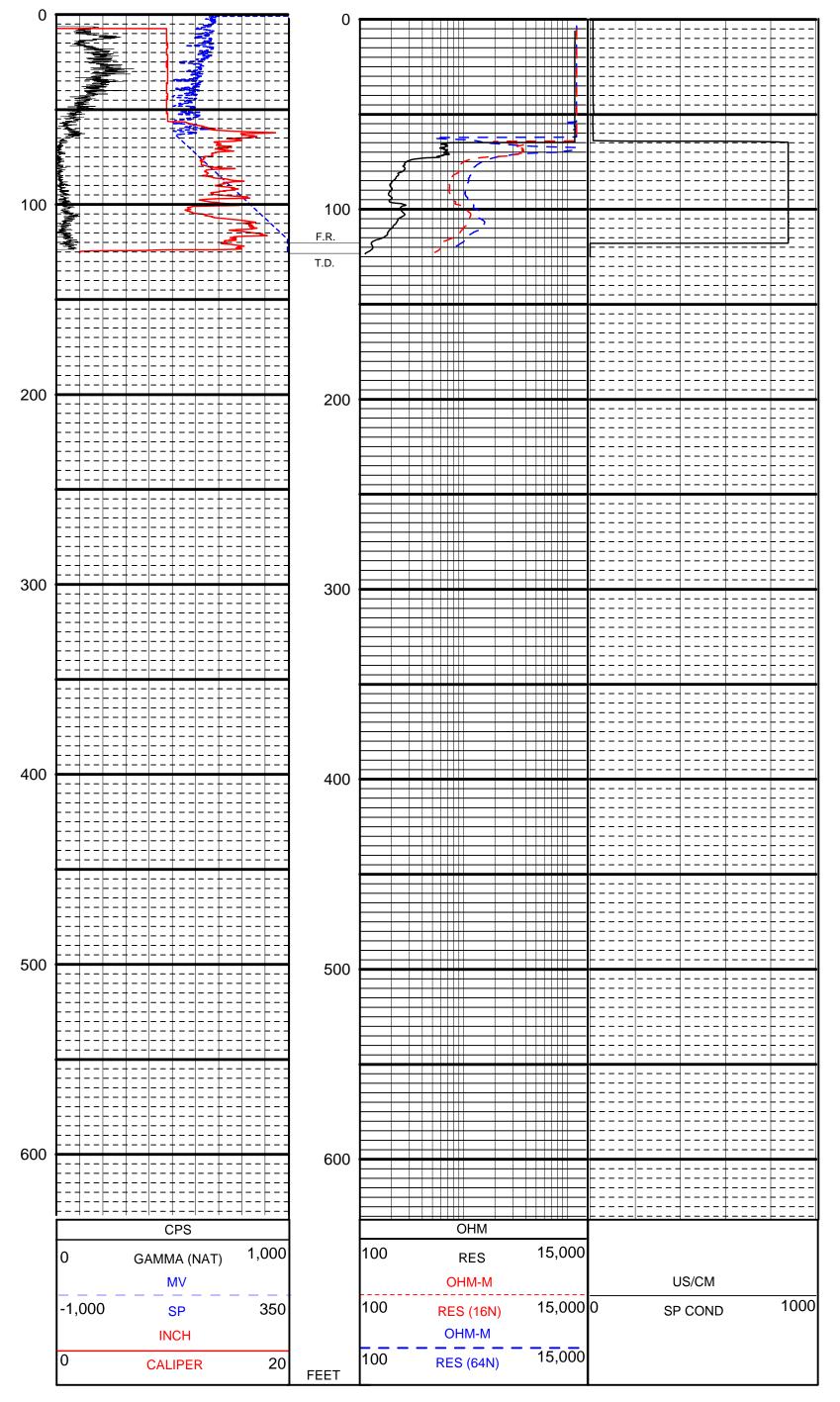
Single-well APTs are conducted on one well within the production zone which is used for both pumping and monitoring the water level response. Background water level in the test well is collected for a time period twice as long as the pumping period (Stallman, 1976). Background water level data collection may not be necessary if the duration of the single-well test is short and the on-site hydrogeologist does not consider background data necessary. During pumping, the discharge rate is monitored and controlled to less than 10 percent fluctuation to ensure a constant rate test. The water level is recorded in the test well during the drawdown (pumping) and recovery phases. Other wells outside of the production zone may be monitored in order to provide additional information on the flow system. The response data are analyzed using analytical methods to estimate the hydraulic properties of the aquifer and adjacent confining units. Typically, response data is analyzed using AQTESOLVE® (Duffield, 2007) software by applying the appropriate analytical solution.

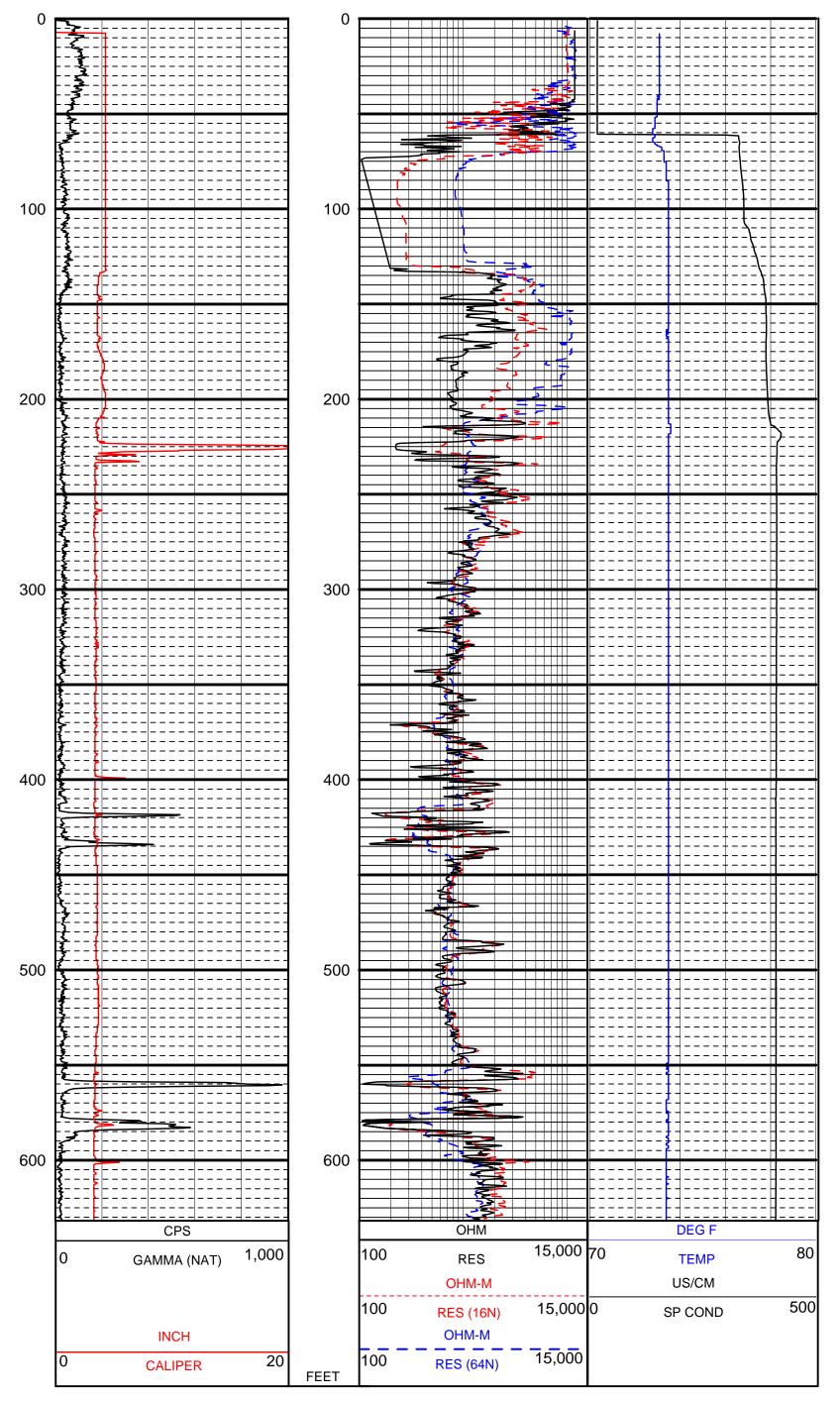
Multi-Well Aquifer Pumping Test


Multi-well APTs are conducted with a pumped well and at least one observation well for monitoring the water level response in the production zone. Background water level data is collected for a time period at least twice the pumping period (Stallman, 1976). During pumping, the discharge rate is monitored and controlled to less than 10 percent fluctuation. The water level response is recorded in both the test well and the observation well(s) during the drawdown (pumping) and recovery phases. Other wells outside of the production zone may be monitored in order to provide additional information on the flow system. The response data are analyzed using analytical or numerical methods to estimate the hydraulic properties of the aquifer and adjacent confining units. Typically, response data is analyzed using AQTESOLVE[®] (Duffield, 2007) software by applying the appropriate analytical solution.

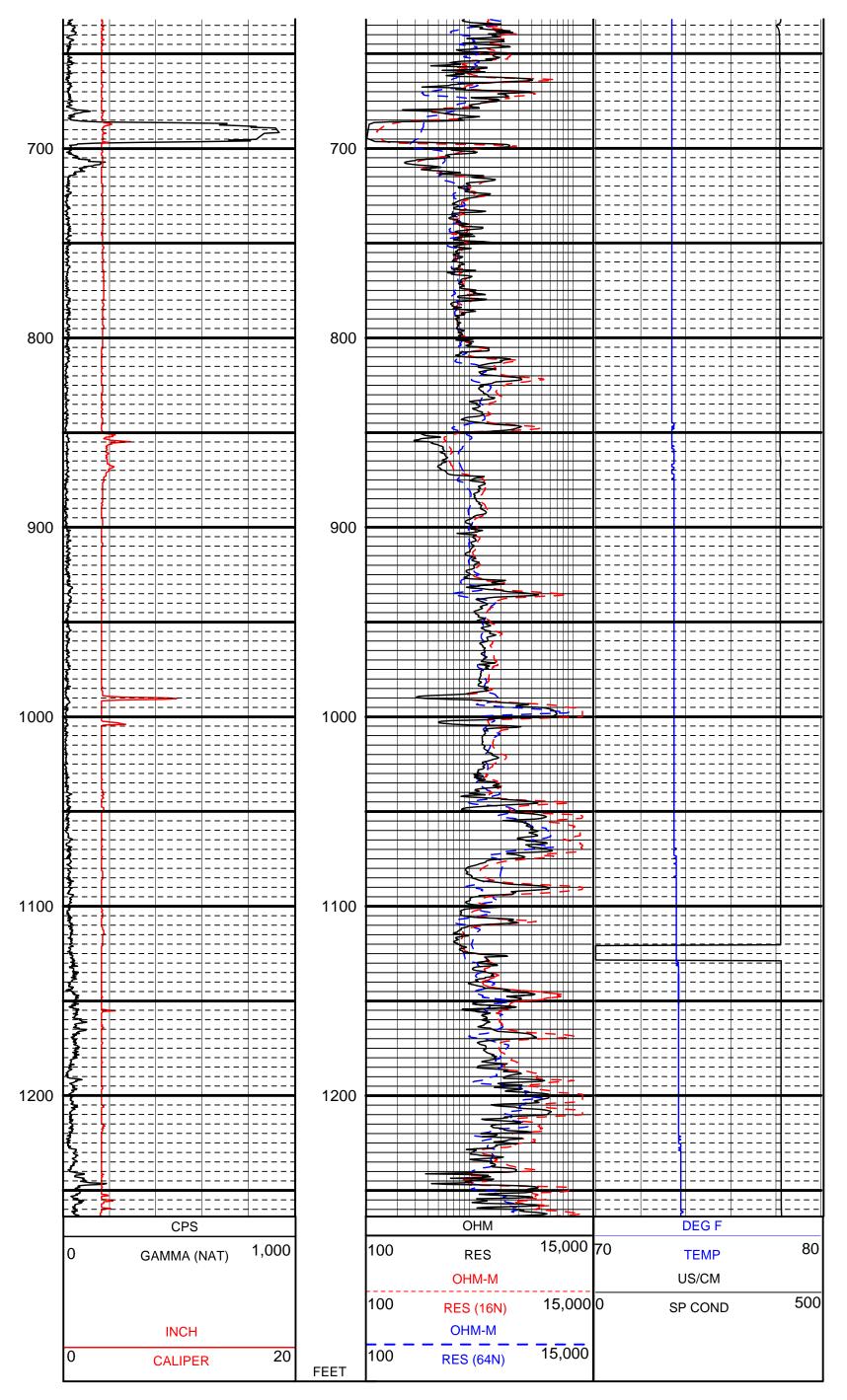
References

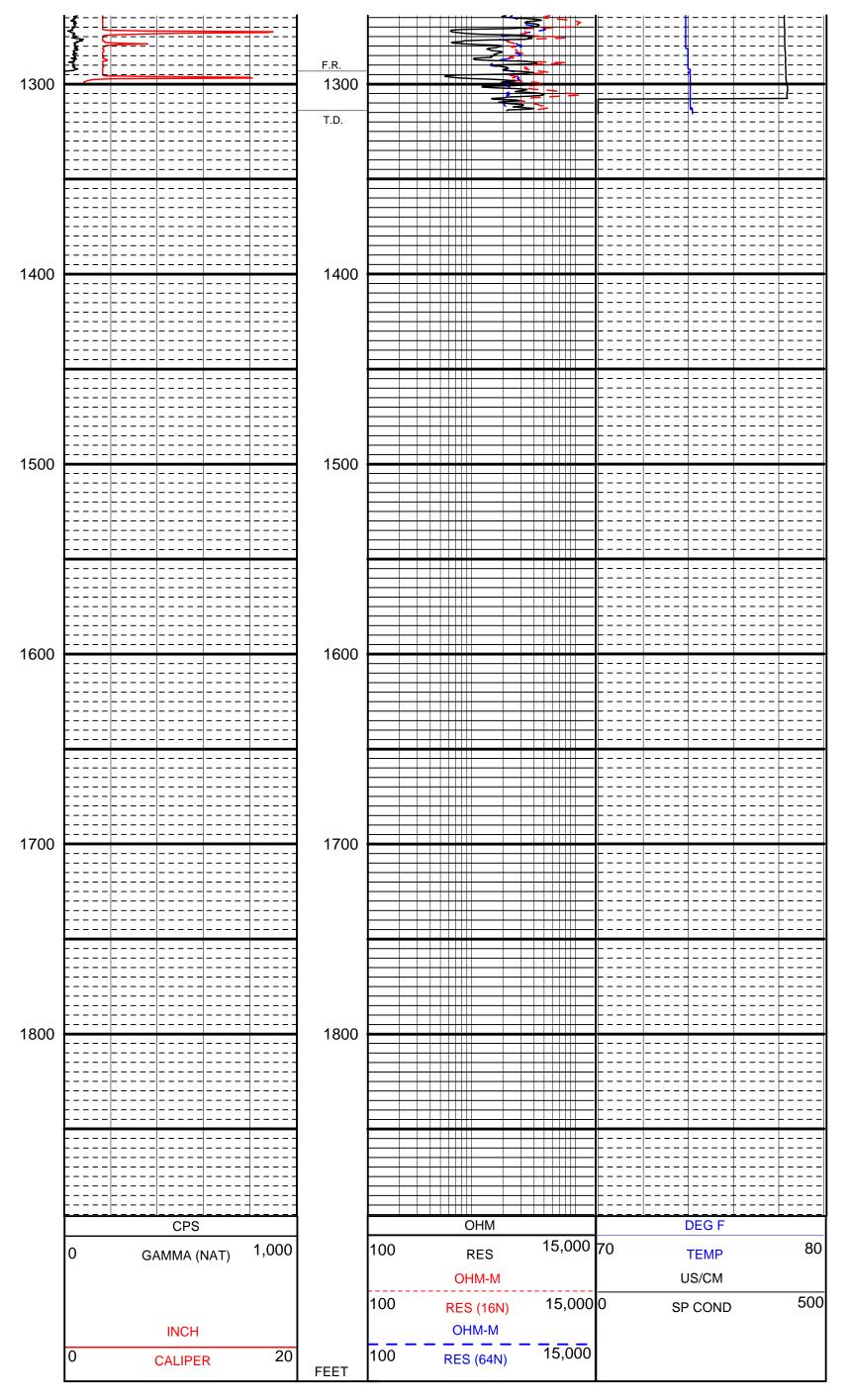
Butler, J.J. 1998, The Design, Performance, and Analysis of Slug Testing: Boca Raton, Florida, Lewis Publishers, 252 p.

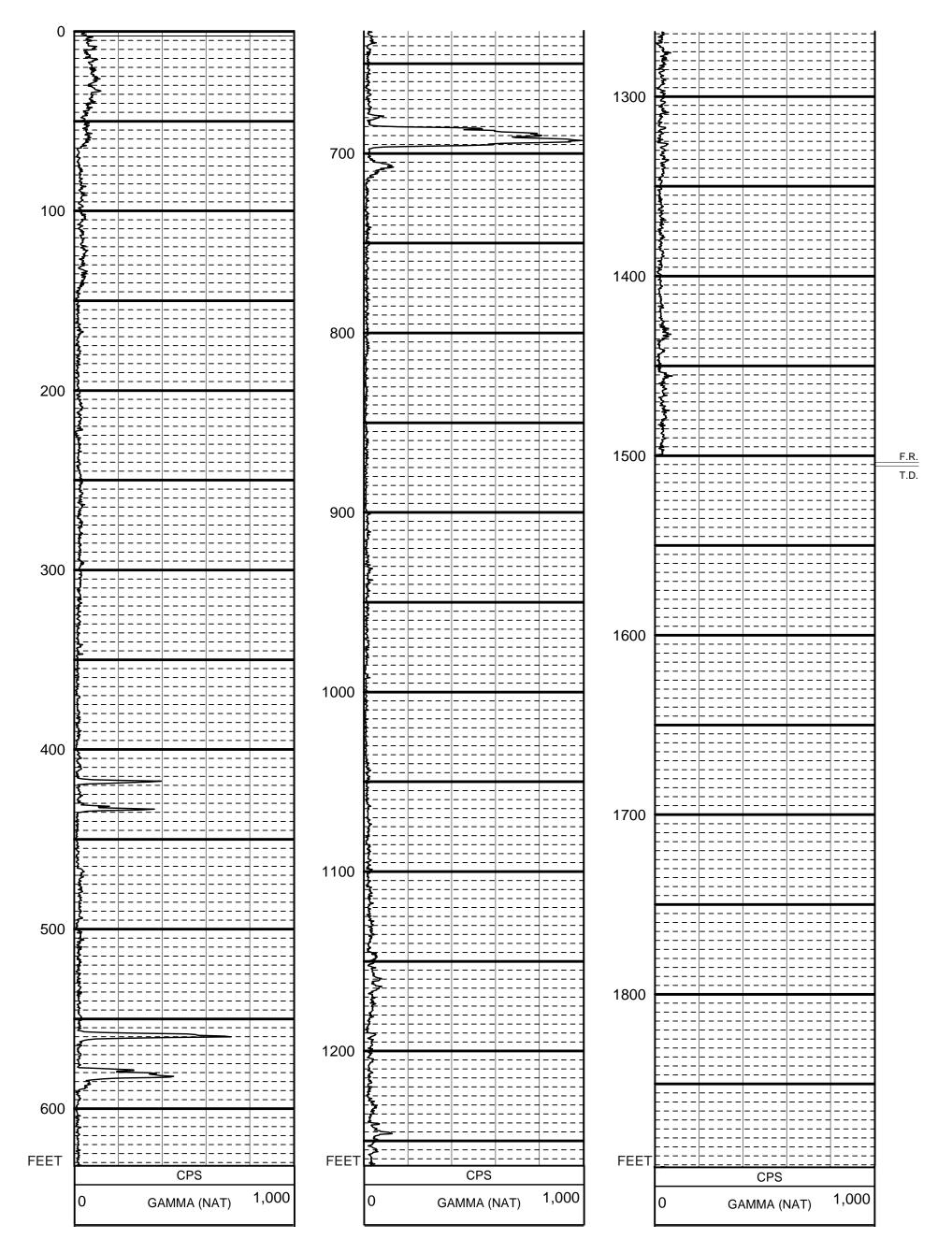

- Domenico, P.A., and Schwartz, F.A. 1998, Physical and Chemical Hydrogeology (2d ed.): New York, John Wiley & Sons, Inc., 528 p.
- Driscolll, Fletcher G., 1986, Groundwater and Wells (2d ed.): St. Paul, Minnesota, Johnson Division, 1089 p.
- Duffield, G. M., 2007, AQTESOLV for Windows, Professional Version 4.5 [software]: Reston, VA, HydroSOLV, Inc.
- Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture, in Ham, W. E. ed., Classification of carbonate rocks: American Association of Petroleum Geologists Memoir 1, p. 108-121.
- Fetter, C.W. 2001, Applied Hydrogeology: Upper Saddle River, New Jersey, Prentice Hall, 598 p.
- Goddard, E.N., and others, 1948, Rock-Color Chart: Washington, D.C., National Research Council, 6p. (Republished by Geological Society of America, 1951; reprinted 1963, 1970, 1975).
- Hem, J. D. 1989, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254.
- Keys, W. S., and MacCary, L. M., 1971, Application of Borehole Geophysics to Water-Resources Investigations, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 2, Chapter E1, p 30-36.
- Shuter, Eugene, and Teasdale, W.E. 1989, Applications of Drilling, Coring, and Sampling Techniques to Test Holes and Wells: U.S. Geological Survey Techniques of Water-Resources Investigations Report 02-F1.
- Southwest Florida Water Management District (SWFWMD), 2009, Quality Control for Southwest Florida Water Management District: Brooksville, Florida, Southwest Florida Water Management District, 125 p.
- Stallman, 1976, Aquifer-Test Design, Observation and Data Analysis: U.S. Geological Survey Techniques of Water-Resource Investigations Report 03-B1.
- Water Quality Monitoring Program, 2009, Standard Operating Procedures for the Collection of Water Quality Samples (rev. 8): Brooksville, FL., Southwest Florida Water Management District. 54 p.

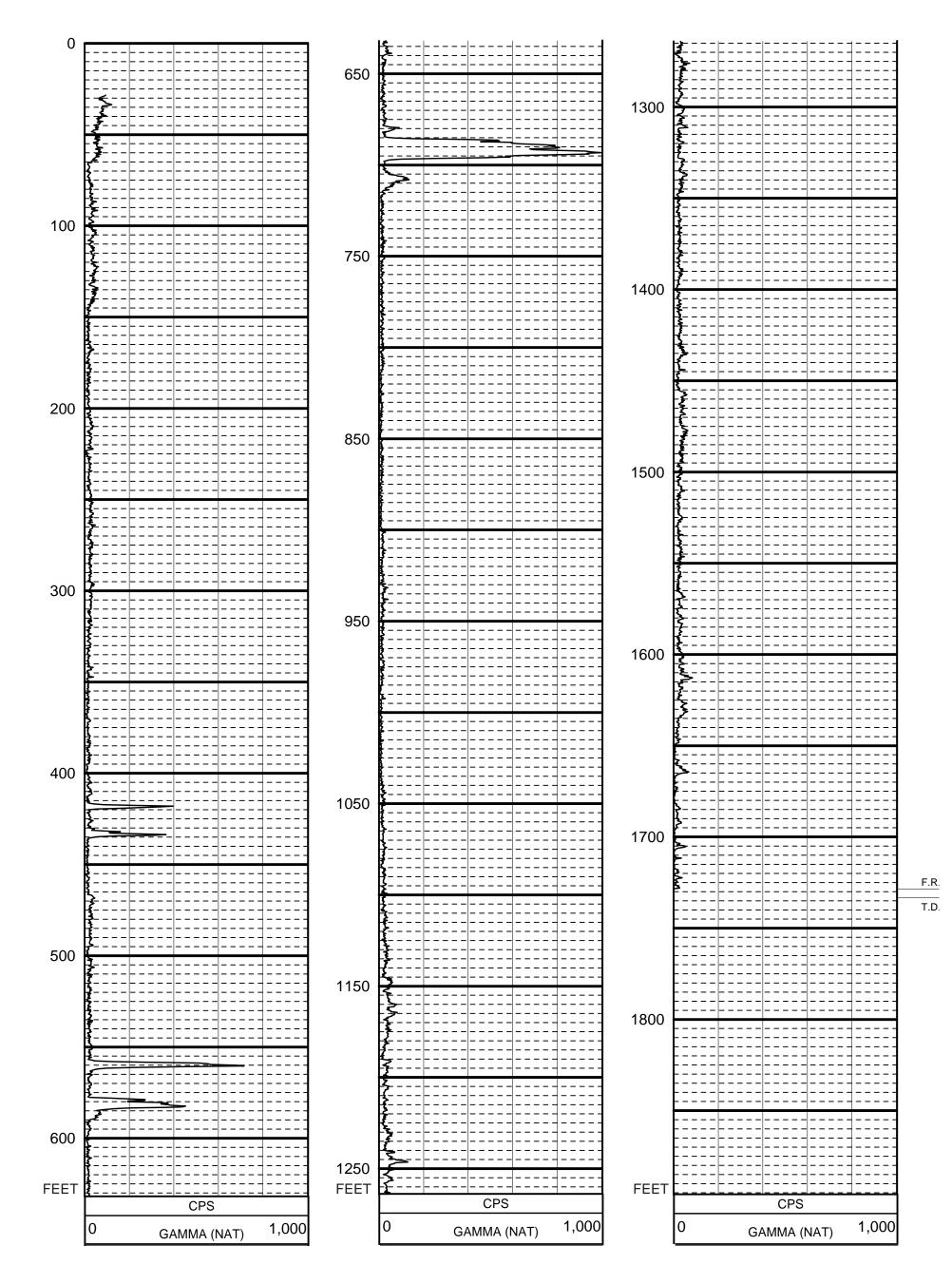


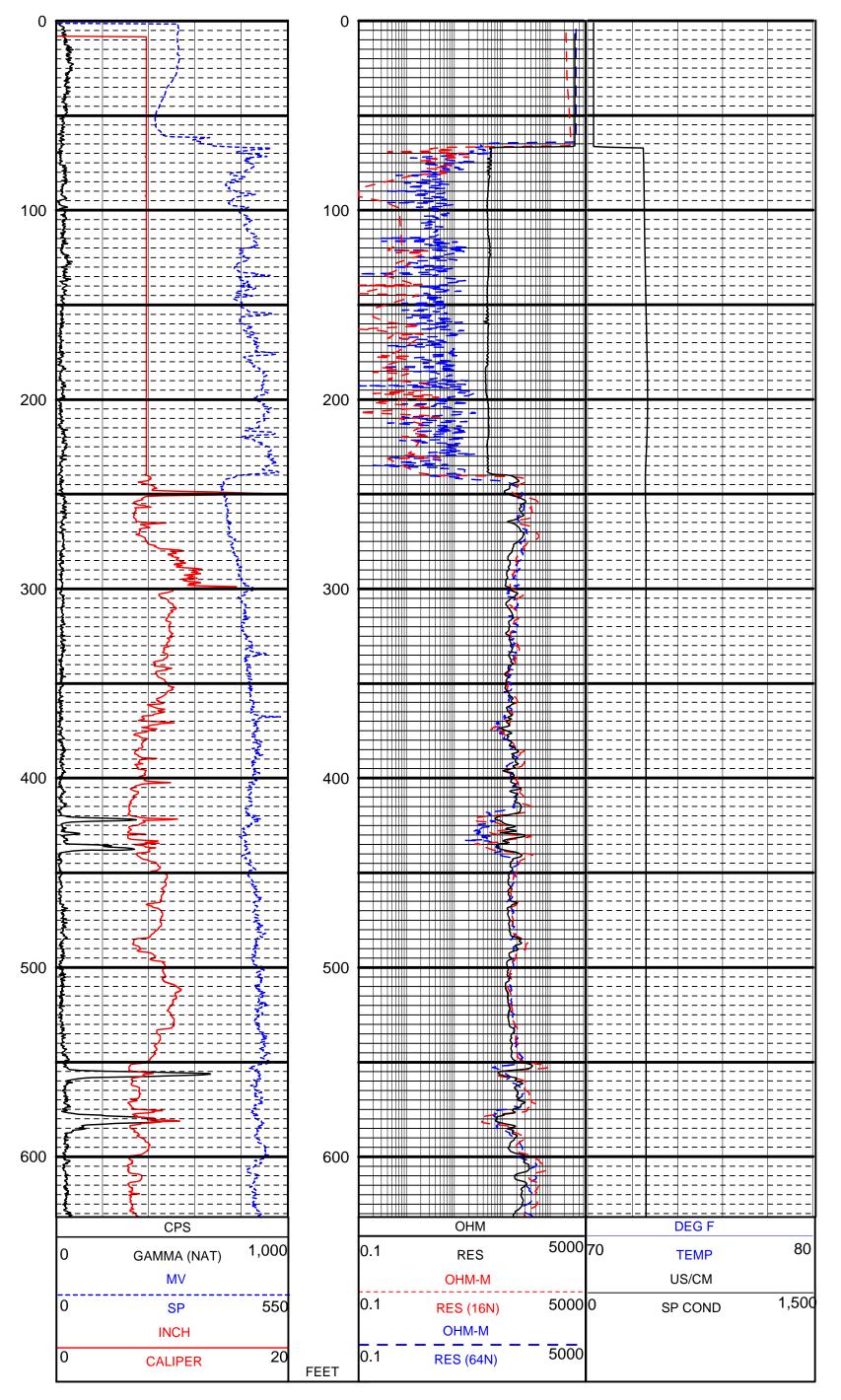
[Logs are to land surface unless otherwise noted; bls, below land surface; PVC, polyvinyl chloride; als, above land surface; MP, measuring point; ft, feet; HWT, temporary 4-inch steel casing; NQ, 2 3/8-inch steel drill rods; HQ, 3.5-inch temporary steel casing; NRQ, 2 3/8-inch steel drill rods; MULTI, multi -probe; CAL, caliper; GAM, gamma; SLIM, slim-line probe; UFA, Upper Floridan aquifer]

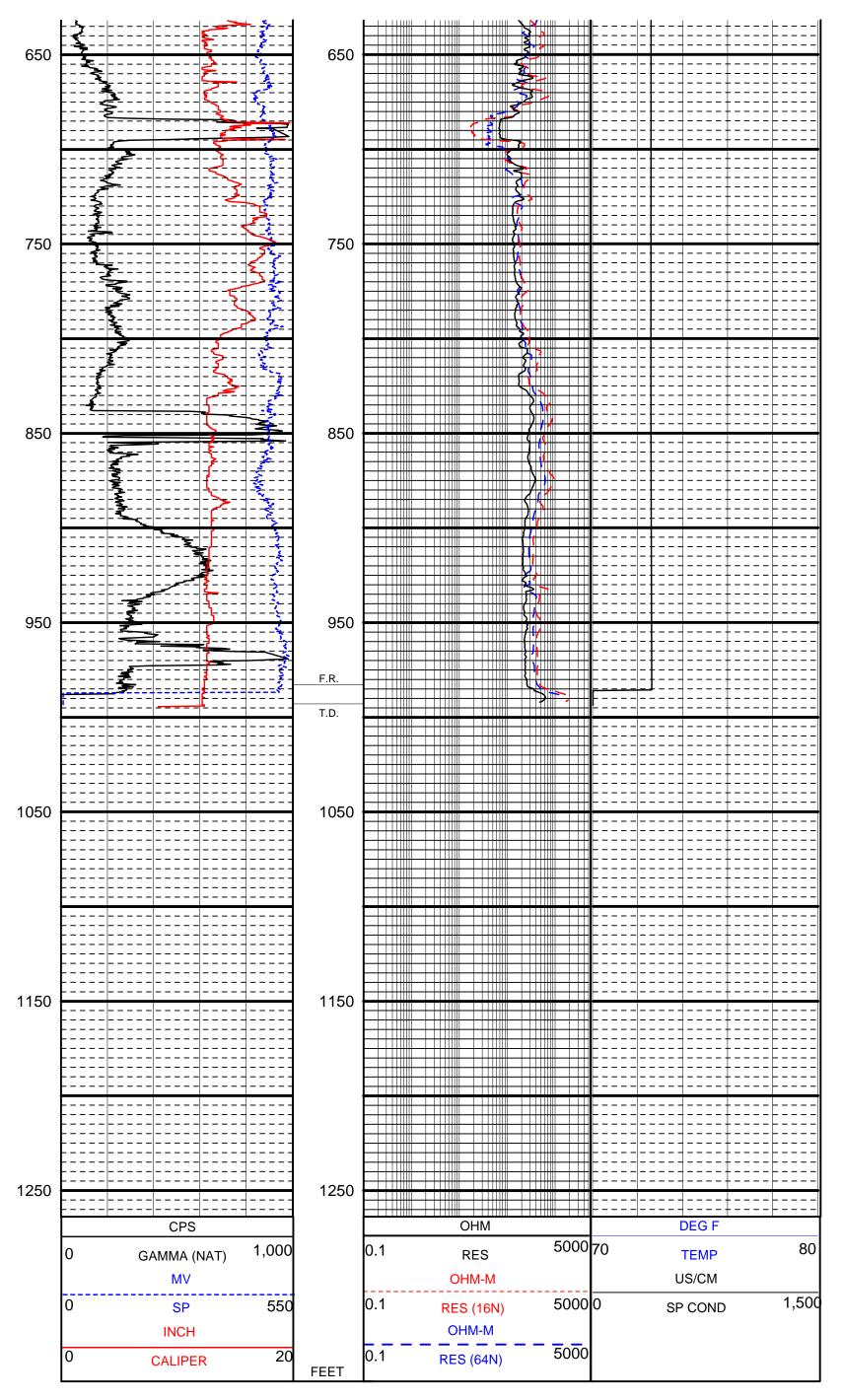

Figure B-1. Well configurations during geophysical logging at the ROMP 132 well site in Marion County, Florida.

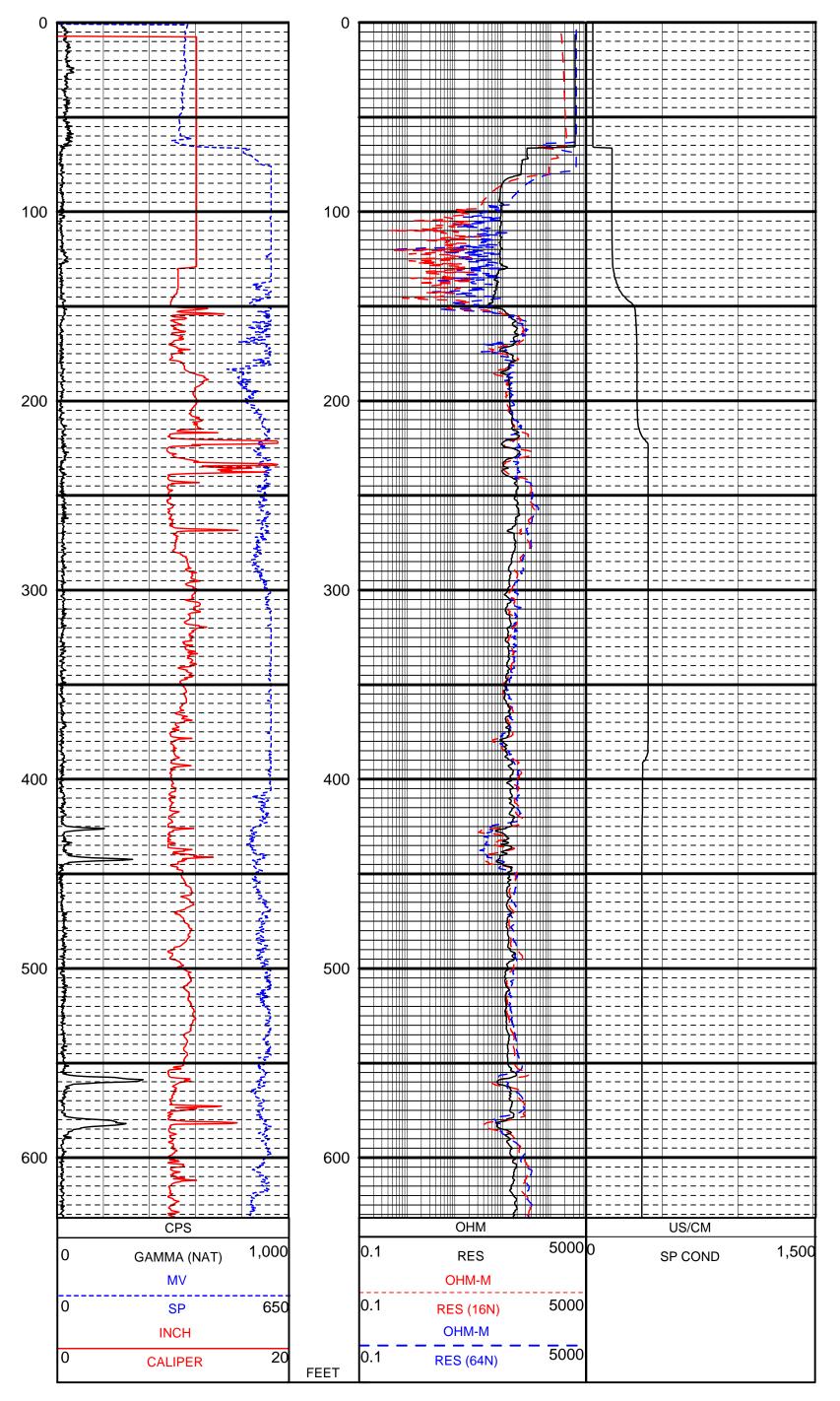

Figure B-2. Geophysical log suite collected in the exploratory core hole, between land surface and 125 feet below land surface, during exploratory coring at the ROMP 132 well site in Marion County, Florida. The logs were collected on 6/23/2008 using tools 9074C (caliper/gamma) and 8044C (multi-tool). The casing depth at the time of logging was 56 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet. The horizontal tracks on the left and right are linearly scaled and the middle track is logarithmically scaled.

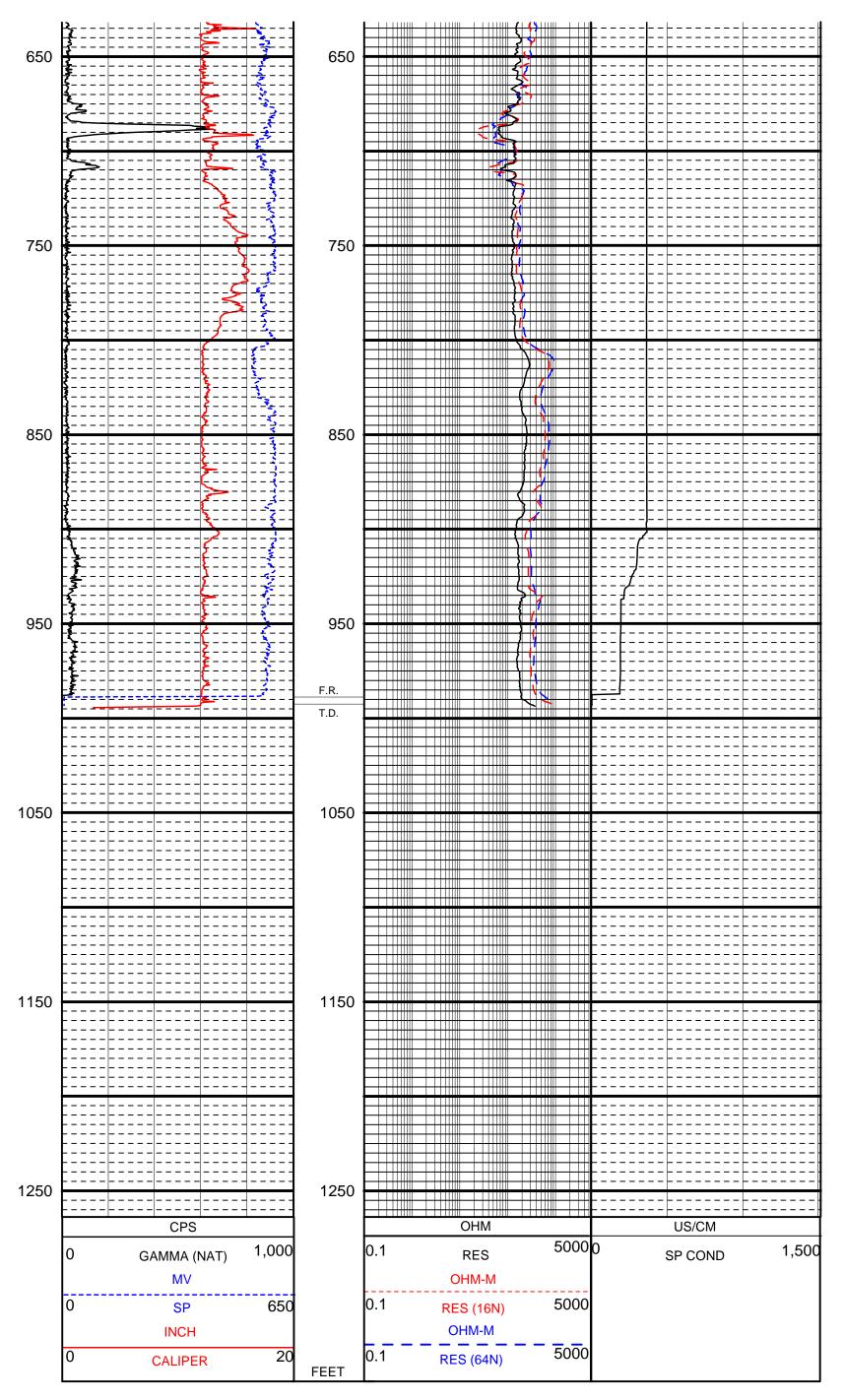

Figure B-3. Geophysical log suite collected in the exploratory core hole, between land surface and 1,315 feet below land surface, during exploratory coring at the ROMP 132 well site in Marion County, Florida. The logs were collected on 1/21/2009 using tools 9165C (caliper/gamma) and 8044C (multi-tool). The casing depth at the time of logging was 131 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet. The horizontal tracks on the left and right are linearly scaled and the middle track is logarithmically scaled.

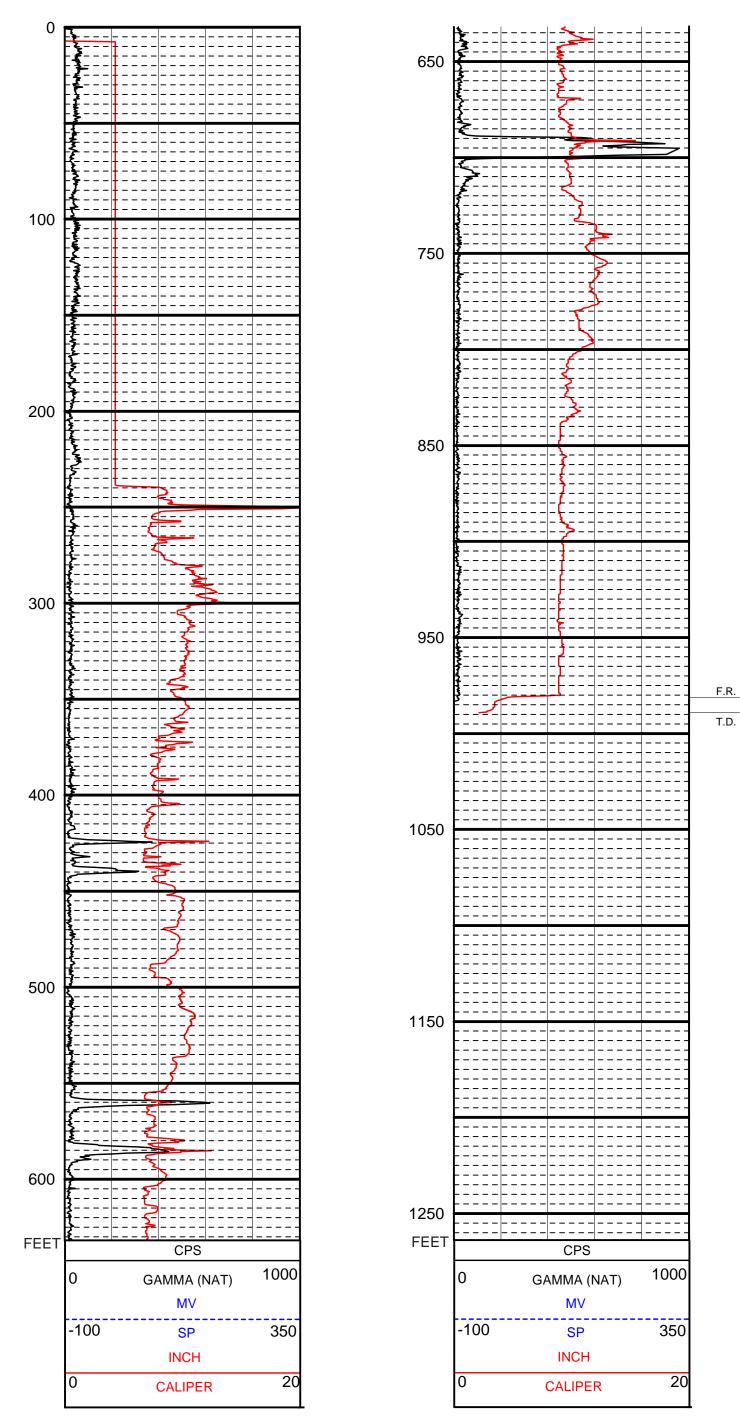

Figure B-3 (continued). Geophysical log suite collected in the exploratory core hole, between land surface and 1,315 feet below land surface, during exploratory coring at the ROMP 132 well site in Marion County, Florida. The logs were collected on 1/21/2009 using tools 9165C (caliper/gamma) and 8044C (multi-tool). The casing depth at the time of logging was 131 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet. The horizontal tracks on the left and right are linearly scaled and the middle track is logarithmically scaled.


Figure B-3 (continued). Geophysical log suite collected in the exploratory core hole, between land surface and 1,315 feet below land surface, during exploratory coring at the ROMP 132 well site in Marion County, Florida. The logs were collected on 1/21/2009 using tools 9165C (caliper/gamma) and 8044C (multi-tool). The casing depth at the time of logging was 131 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet. The horizontal tracks on the left and right are linearly scaled and the middle track is logarithmically scaled.


Figure B-4. Geophysical log collected in the exploratory core hole, between land surface and 1,505 feet below land surface, during exploratory coring at the ROMP 132 well site in Marion County, Florida. The logs were collected on 1/21/2009 using tool 9165C (caliper/gamma). The casing depth at the time of logging was 1,500 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet.


Figure B-5. Geophysical log collected in the exploratory core hole, between land surface and 1,734 feet below land surface, during exploratory coring at the ROMP 132 well site in Marion County, Florida. The logs were collected on 9/15/2010 using tool 9165C (caliper/gamma). The casing depth at the time of logging was 1,734 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet.


Figure B-6. Geophysical log suite collected in the permanent Upper Floridan aquifer monitor well, between land surface and 993 feet below land surface, during well construction at the ROMP 132 well site in Marion County, Florida. The logs were collected on 12/3/2009 using tools 9074C (caliper/gamma) and 8044C (multi-tool). The casing depth at the time of logging was 239 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet. The horizontal tracks on the left and right are linearly scaled and the middle track is logarithmically scaled.


Figure B-6 (continued). Geophysical log suite collected in the permanent Upper Floridan aquifer monitor well, between land surface and 993 feet below land surface, during well construction at the ROMP 132 well site in Marion County, Florida. The logs were collected on 12/3/2009 using tools 9074C (caliper/gamma) and 8044C (multi-tool). The casing depth at the time of logging was 239 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet. The horizontal tracks on the left and right are linearly scaled and the middle track is logarithmically scaled.

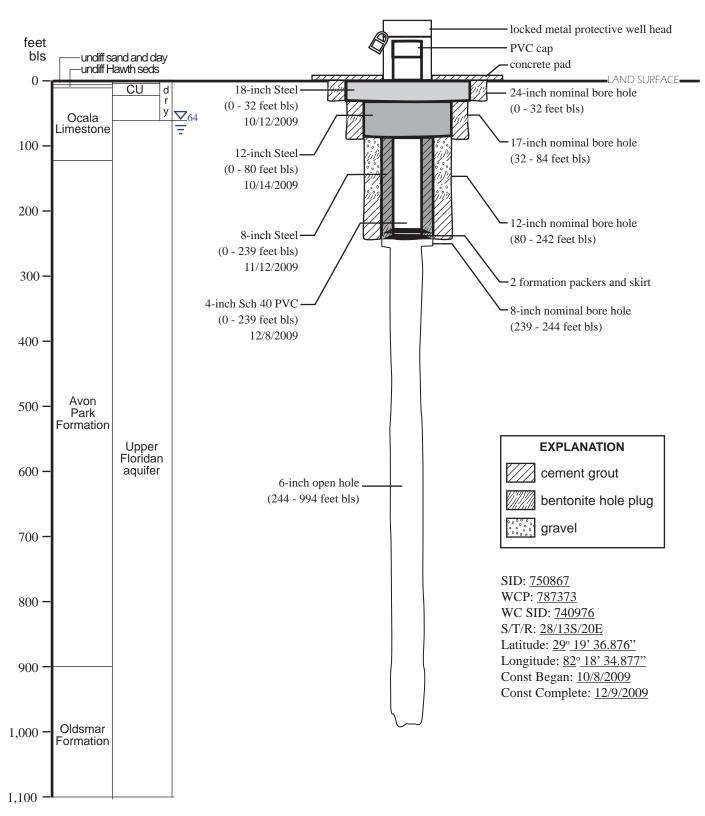

Figure B-7. Geophysical log suite collected in the temporary Upper Floridan aquifer production well, between land surface and 994 feet below land surface, after well construction at the ROMP 132 well site in Marion County, Florida. The logs were collected on 12/3/2009 using tools 9074C (caliper/gamma) and 8044C (multi-tool). The casing depth at the time of logging was 129 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet. The horizontal tracks on the left and right are linearly scaled and the middle track is logarithmically scaled.

Figure B-7 (continued). Geophysical log suite collected in the temporary Upper Floridan aquifer production well, between land surface and 994 feet below land surface, after well construction at the ROMP 132 well site in Marion County, Florida. The logs were collected on 12/3/2009 using tools 9074C (caliper/gamma) and 8044C (multi-tool). The casing depth at the time of logging was 129 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet. The horizontal tracks on the left and right are linearly scaled and the middle track is logarithmically scaled.

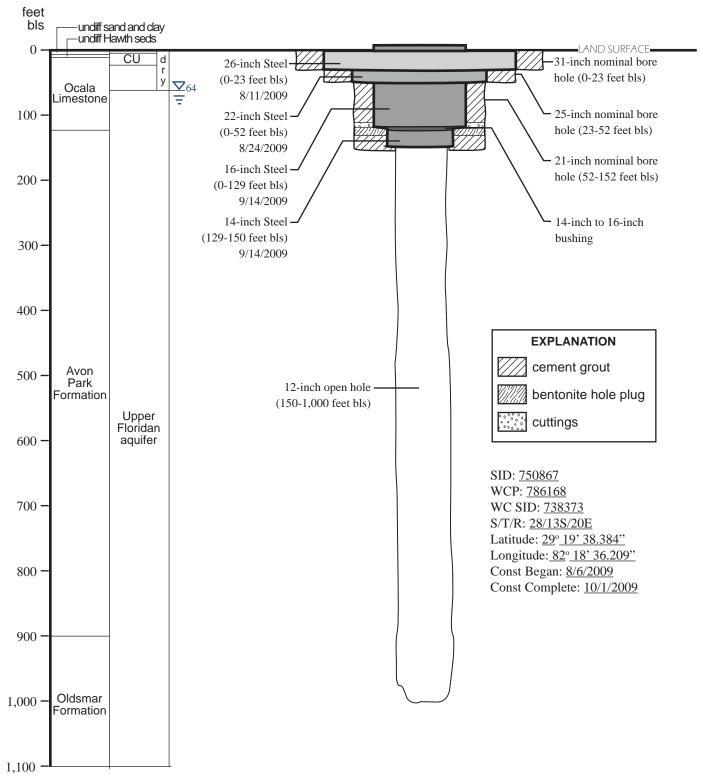


Figure B-8. Geophysical log suite collected in the permanent Upper Floridan aquifer monitor well, between land surface and 989 feet below land surface, after well construction at the ROMP 132 well site in Marion County, Florida. The logs were collected on 1/29/2010 using tool 9165C (caliper/gamma). The casing depth at the time of logging was 239 feet below land surface (see figure B-1). The vertical log scale is 2 inches per 100 feet.

bls, below land surface; Const, construction; CU, confining unit; E, east; PVC, polyvinyl chloride; S, south; Sch, Schedule; undiff, undifferentiated; SID, District site identification number; S/T/R, Section/Township/Range undiff Hawth sed, undifferentiated Hawthorn Group sediments; WCP, well construction permit number; WC SID, District well construction site identification number

Figure C-1. As-built diagram of the Upper Floridan aquifer monitor well at the ROMP 132 well site.

bls, below land surface; Const, construction; CU, confining unit; E, east; PVC, polyvinyl chloride; S, south; Sch, Schedule; undiff, undifferentiated; SID, District site identification number; S/T/R, Section/Township/Range undiff Hawth sed, undifferentiated Hawthorn Group sediments; WCP, well construction permit number; WC SID, District well construction site identification number

Figure C-2. As-built diagram of the Upper Floridan aquifer production well at the ROMP 132 well site.

LITHOLOGIC WELL LOG PRINTOUT SOURCE - FGS

WELL NUMBER: W-19249	COUNTY - MARION
TOTAL DEPTH: 1687 FT.	LOCATION: T.13S R.20E S.28
SAMPLES - NONE	LAT = 29D 19M 36S
	LON = 82D 18M 36S
COMPLETION DATE: 27/07/10	ELEVATION: 108 FT

OTHER TYPES OF LOGS AVAILABLE - CALIPER

OWNER/DRILLER:SWFWMD; ROMP 132; TIM LOHNER & DALE JORDAN & ANDREW BOWIE & BAR

WORKED BY:ANNA JANOSIK; CORE HOLE DRILLED IN TWO PHASES; PHASE 1 OCCURRED 06/ TO 02/11/2009 FROM LAND SURFACE TO 1500 FEET BELOW LAND SURFACE. PHASE 2 OCCURRED 07/20/2010 TO 07/27/2010 FROM 1500 TO 1687 FEET BELOW LAND SURFACE. CORE QUALITY IS EXCELLENT.

0 6.	090UDSC UNDIFFERENTIATED SAND AND CLAY
6 11.	122HTRN HAWTHORN GROUP
11 125.	124OCAL OCALA GROUP
125 900.	124AVPK AVON PARK FM.
900 1557.	124OLDM OLDSMAR LIMESTONE
1557 TD.	125CDRK CEDAR KEYS LIMESTONE
0 - 0.8	SAND; DARK YELLOWISH BROWN
	15% POROSITY: INTERGRANULAR
	GRAIN SIZE: FINE; RANGE: FINE TO MEDIUM
	ROUNDNESS: ANGULAR TO SUB-ANGULAR; MEDIUM SPHERICITY
	UNCONSOLIDATED

ACCESSORY MINERALS: SILT-05%

- 0.8 3.8 SAND; LIGHT BROWN TO MODERATE BROWN 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY GRAIN SIZE: FINE; RANGE: FINE TO MEDIUM ROUNDNESS: ANGULAR TO SUB-ANGULAR; MEDIUM SPHERICITY UNCONSOLIDATED SEDIMENTARY STRUCTURES: MOTTLED ACCESSORY MINERALS: CLAY-20%, IRON STAIN-05%
- 3.8 6 CLAY; MODERATE GRAY TO LIGHT BROWN 03% POROSITY: INTERGRANULAR, LOW PERMEABILITY UNCONSOLIDATED SEDIMENTARY STRUCTURES: MOTTLED ACCESSORY MINERALS: IRON STAIN-35%, ORGANICS-01%
- 6 10 CLAY; LIGHT OLIVE TO LIGHT BROWN 01% POROSITY: INTERGRANULAR, LOW PERMEABILITY UNCONSOLIDATED

SEDIMENTARY STRUCTURES: MOTTLED ACCESSORY MINERALS: IRON STAIN-35%

- 10 11 CLAY; DARK YELLOWISH ORANGE TO LIGHT OLIVE 02% POROSITY: INTERGRANULAR, LOW PERMEABILITY UNCONSOLIDATED SEDIMENTARY STRUCTURES: MOTTLED ACCESSORY MINERALS: IRON STAIN-65%
- 11 25 CHERT; WHITE TO LIGHT OLIVE GRAY 30% POROSITY: FRACTURE, INTERGRANULAR; GOOD INDURATION ACCESSORY MINERALS: CALCILUTITE-02% OTHER FEATURES: POOR SAMPLE
- 25 39 NO SAMPLES
- 39 41 PACKSTONE; VERY LIGHT ORANGE 15% POROSITY: INTERGRANULAR, MOLDIC, VUGULAR GRAIN TYPE: OOLITE, SKELETAL, CALCILUTITE GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE GOOD INDURATION ACCESSORY MINERALS: IRON STAIN-05% OTHER FEATURES: WEATHERED FOSSILS: MOLLUSKS
- 41 44 CLAY; DARK YELLOWISH BROWN 05% POROSITY: INTERGRANULAR; UNCONSOLIDATED SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: LIMESTONE-15%, IRON STAIN-05% OTHER FEATURES: POOR SAMPLE
- 44 45 PACKSTONE; VERY LIGHT ORANGE 15% POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, OOLITE, SKELETAL GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE POOR INDURATION SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: IRON STAIN-03% OTHER FEATURES: WEATHERED, POOR SAMPLE
- 45 46 CLAY; DARK YELLOWISH BROWN 05% POROSITY: INTERGRANULAR; UNCONSOLIDATED SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: LIMESTONE-15%, IRON STAIN-05% ORGANICS-02%
- 46 49.5 NO SAMPLES

- 49.5 50 PACKSTONE; WHITE 15% POROSITY: INTERGRANULAR, MOLDIC, VUGULAR GRAIN TYPE: SKELETAL, CALCILUTITE, OOLITE GRAIN SIZE: FINE; RANGE: FINE TO VERY COARSE GOOD INDURATION SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED ACCESSORY MINERALS: IRON STAIN-03% OTHER FEATURES: WEATHERED FOSSILS: MOLLUSKS, BRYOZOA, BENTHIC FORAMINIFERA
- 50 50.5 CLAY; DARK YELLOWISH BROWN 03% POROSITY: INTERGRANULAR; UNCONSOLIDATED SEDIMENTARY STRUCTURES: INTERBEDDED, MOTTLED ACCESSORY MINERALS: LIMESTONE-20% NUMMULITIES
- 50.5 52.5 PACKSTONE; LIGHT YELLOWISH ORANGE TO WHITE 20% POROSITY: INTERGRANULAR GRAIN TYPE: SKELETAL, OOLITE, CALCILUTITE GRAIN SIZE: MEDIUM; RANGE: FINE TO VERY COARSE MODERATE INDURATION OTHER FEATURES: WEATHERED, FOSSILIFEROUS FOSSILS: BENTHIC FORAMINIFERA, OOLITES NUMMULITIES
- 52.5 57.4 GRAINSTONE; WHITE 20% POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, OOLITE GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE MODERATE INDURATION OTHER FEATURES: WEATHERED FOSSILS: BENTHIC FORAMINIFERA, OOLITES NUMMULITIES
- 57.4 70 PACKSTONE; WHITE TO VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, SKELETAL, OOLITE GRAIN SIZE: MEDIUM; RANGE: FINE TO VERY COARSE MODERATE INDURATION OTHER FEATURES: WEATHERED FOSSILS: BENTHIC FORAMINIFERA, OOLITES
- 70 85 GRAINSTONE; WHITE TO VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, OOLITE GRAIN SIZE: FINE; RANGE: FINE TO MEDIUM MODERATE INDURATION OTHER FEATURES: WEATHERED

FOSSILS: OOLITES

- 85 92.5 GRAINSTONE; WHITE TO VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, OOLITE GRAIN SIZE: FINE; RANGE: FINE TO MEDIUM MODERATE INDURATION OTHER FEATURES: WEATHERED, POOR SAMPLE FOSSILS: OOLITES
- 92.5 124.5 PACKSTONE; WHITE TO VERY LIGHT ORANGE 25% POROSITY: INTERGRANULAR, MOLDIC GRAIN TYPE: CALCILUTITE, SKELETAL, OOLITE GRAIN SIZE: FINE; RANGE: FINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: WEATHERED FOSSILS: MOLLUSKS, OOLITES, ECHINOID
- 124.5 125 SAND; LIGHT YELLOWISH ORANGE 15% POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO FINE ROUNDNESS: ROUNDED TO SUB-ANGULAR; MEDIUM SPHERICITY UNCONSOLIDATED OTHER FEATURES: CALCAREOUS
- 125 137 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 25% POROSITY: MOLDIC, PIN POINT VUGS, INTERCRYSTALLINE 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO MEDIUM; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-01% FOSSILS: ECHINOID
- 137 144.3 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 15% POROSITY: MOLDIC, PIN POINT VUGS, INTERCRYSTALLINE 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO MEDIUM; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-01%
- 144.3 153.2 DOLOSTONE; DARK YELLOWISH ORANGE TO GRAYISH ORANGE 25% POROSITY: MOLDIC, PIN POINT VUGS, INTERCRYSTALLINE 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO MEDIUM; GOOD INDURATION
- 153.2 162.3 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN 25% POROSITY: MOLDIC, PIN POINT VUGS, VUGULAR 90-100% ALTERED; SUBHEDRAL

GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION OTHER FEATURES: WEATHERED FOSSILS: ECHINOID

- 162.3 165 DOLOSTONE; GRAYISH ORANGE TO DARK YELLOWISH ORANGE 10% POROSITY: PIN POINT VUGS, INTERGRANULAR 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE; RANGE: MEDIUM TO FINE GOOD INDURATION ACCESSORY MINERALS: ORGANICS-01%
- 165 166.4 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE 25% POROSITY: PIN POINT VUGS, INTERGRANULAR 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION OTHER FEATURES: WEATHERED
- 166.4 167.4 NO SAMPLES
- 167.4 169.1 MUDSTONE; VERY LIGHT ORANGE GRAIN TYPE: CALCILUTITE GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: DOLOMITE-02%, ORGANICS-01% OTHER FEATURES: CHALKY
- 169.1 169.4 SILT; GRAYISH ORANGE TO GRAYISH BROWN 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY GOOD INDURATION SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: CLAY-15%, LIMESTONE-10% OTHER FEATURES: POOR SAMPLE, CALCAREOUS
- 169.4 179 WACKESTONE; VERY LIGHT ORANGE 10% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: CALCILUTITE GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-01% OTHER FEATURES: CHALKY
- 179 180.7 MUDSTONE; VERY LIGHT ORANGE 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY GRAIN TYPE: CALCILUTITE GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION

SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-15% OTHER FEATURES: CHALKY, DOLOMITIC

- 180.7 200.6 PACKSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: PIN POINT VUGS, INTERGRANULAR, MOLDIC GRAIN TYPE: CRYSTALS, PELLET, CALCILUTITE GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: DOLOMITIC FOSSILS: MOLLUSKS, BRYOZOA, ECHINOID
- 200.6 203.8 WACKESTONE; VERY LIGHT ORANGE 15% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: PELLET, CRYSTALS GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: BEDDED
- 203.8 209.4 PACKSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: OOLITE, PELLET, CRYSTALS GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO COARSE GOOD INDURATION ACCESSORY MINERALS: CHERT-02%, CALCITE-01% OTHER FEATURES: WEATHERED, FOSSILIFEROUS FOSSILS: OOLITES, MOLLUSKS, ECHINOID, CORAL
- 209.4 211.2 DOLOSTONE; GRAYISH ORANGE 15% POROSITY: MOLDIC, PIN POINT VUGS, INTERGRANULAR 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: LIMESTONE-15% OTHER FEATURES: CALCAREOUS FOSSILS: MOLLUSKS, ECHINOID
- 211.2 214.2 DOLOSTONE; GRAYISH ORANGE 05% POROSITY: MOLDIC, INTERCRYSTALLINE; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION FOSSILS: MOLLUSKS
- 214.2 225 DOLOSTONE; VERY LIGHT ORANGE 10% POROSITY: PIN POINT VUGS, INTERCRYSTALLINE

50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: IRON STAIN-10%

- 225 225.9 MUDSTONE; VERY LIGHT ORANGE 05% POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: IRON STAIN-10%
- 225.9 230 NO SAMPLES
- 230 232.2 WACKESTONE; VERY LIGHT ORANGE 05% POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE, OOLITE GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: IRON STAIN-10%, CALCITE-10% FOSSILS: MOLLUSKS, CORAL
- 232.2 235 DOLOSTONE; GRAYISH ORANGE 10% POROSITY: PIN POINT VUGS, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: IRON STAIN-05% FOSSILS: MOLLUSKS, ECHINOID
- 235 242.6 DOLOSTONE; GRAYISH ORANGE 10% POROSITY: PIN POINT VUGS, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION
- 242.6 245 DOLOSTONE; VERY LIGHT ORANGE 02% POROSITY: FRACTURE, INTERGRANULAR; 50-90% ALTERED GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION OTHER FEATURES: POOR SAMPLE
- 245 251 DOLOSTONE; GRAYISH ORANGE 15% POROSITY: PIN POINT VUGS, INTERGRANULAR, MOLDIC 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION OTHER FEATURES: WEATHERED FOSSILS: MOLLUSKS

- 251 258.5 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 10% POROSITY: PIN POINT VUGS, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION
- 258.5 272.6 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 15% POROSITY: PIN POINT VUGS, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION OTHER FEATURES: WEATHERED FOSSILS: MOLLUSKS, ECHINOID
- 272.6 275.6 DOLOSTONE; VERY LIGHT ORANGE 15% POROSITY: INTERGRANULAR, PIN POINT VUGS 50-90% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ORGANICS-20%
- 275.6 277.6 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 25% POROSITY: INTERGRANULAR, PIN POINT VUGS 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO VERY COARSE; GOOD INDURATION OTHER FEATURES: WEATHERED, FOSSILIFEROUS FOSSILS: OOLITES, ECHINOID, FOSSIL FRAGMENTS
- 277.6 292 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 25% POROSITY: INTERGRANULAR, PIN POINT VUGS 10-50% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION OTHER FEATURES: CALCAREOUS FOSSILS: MOLLUSKS, ECHINOID
- 292 297.2 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 15% POROSITY: INTERGRANULAR, PIN POINT VUGS 10-50% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-20%, ORGANICS-05% OTHER FEATURES: CALCAREOUS

- 297.2 300.8 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 25% POROSITY: INTERGRANULAR, PIN POINT VUGS 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO MEDIUM; GOOD INDURATION FOSSILS: MOLLUSKS
- 300.8 307 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 15% POROSITY: INTERGRANULAR, PIN POINT VUGS 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-20%, ORGANICS-05%
- 307 312.2 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, PIN POINT VUGS 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: WEATHERED FOSSILS: MOLLUSKS
- 312.2 325 DOLOSTONE; VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR, PIN POINT VUGS 10-50% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30%, ORGANICS-05% OTHER FEATURES: CALCAREOUS, WEATHERED FOSSILS: MOLLUSKS
- 325 326 DOLOSTONE; LIGHT OLIVE GRAY 20% POROSITY: PIN POINT VUGS, MOLDIC; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO MEDIUM; GOOD INDURATION FOSSILS: MOLLUSKS
- 326 330.6 DOLOSTONE; VERY LIGHT ORANGE 20% POROSITY: MOLDIC, VUGULAR, PIN POINT VUGS 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION ACCESSORY MINERALS: IRON STAIN-15% OTHER FEATURES: POOR SAMPLE, CALCAREOUS

- 330.6 354.6 DOLOSTONE; VERY LIGHT ORANGE TO MODERATE LIGHT GRAY 15% POROSITY: PIN POINT VUGS, VUGULAR, MOLDIC 50-90% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30% OTHER FEATURES: WEATHERED, PLATY FOSSILS: MOLLUSKS
- 354.6 359.5 DOLOSTONE; VERY LIGHT ORANGE TO MODERATE LIGHT GRAY 25% POROSITY: VUGULAR, PIN POINT VUGS, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: PLATY FOSSILS: MOLLUSKS
- 359.5 370.4 DOLOSTONE; VERY LIGHT ORANGE TO MODERATE LIGHT GRAY 20% POROSITY: PIN POINT VUGS, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30% OTHER FEATURES: PLATY
- 370.4 370.6 CLAY; LIGHT OLIVE GRAY 02% POROSITY: INTERGRANULAR OTHER FEATURES: PLATY
- 370.6 376.2 DOLOSTONE; VERY LIGHT ORANGE 10% POROSITY: INTERGRANULAR, VUGULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30% OTHER FEATURES: PLATY
- 376.2 378.3 DOLOSTONE; VERY LIGHT ORANGE 20% POROSITY: PIN POINT VUGS, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: PLATY FOSSILS: MOLLUSKS
- 378.3 379.7 DOLOSTONE; VERY LIGHT ORANGE TO MODERATE LIGHT GRAY 15% POROSITY: INTERGRANULAR, VUGULAR; 50-90% ALTERED SUBHEDRAL

GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: MOTTLED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30% OTHER FEATURES: PLATY FOSSILS: MOLLUSKS

- 379.7 380 DOLOSTONE; VERY LIGHT ORANGE 15% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30%, ORGANICS-20% OTHER FEATURES: PLATY
- 380 392 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: PIN POINT VUGS, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION ACCESSORY MINERALS: SILT-SIZE DOLOMITE-20% OTHER FEATURES: PLATY FOSSILS: MOLLUSKS, ECHINOID
- 392 393.3 DOLOSTONE; VERY LIGHT ORANGE 10% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-40%, ORGANICS-20% OTHER FEATURES: CHALKY, PLATY
- 393.3 400.6 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: PIN POINT VUGS, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: PLATY FOSSILS: MOLLUSKS, BRYOZOA, ECHINOID
- 400.6 400.9 DOLOSTONE; VERY LIGHT ORANGE 10% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-40%, ORGANICS-20% OTHER FEATURES: CHALKY, PLATY

400.9 -	-	403.2	DOLOSTONE; VERY LIGHT ORANGE
			20% POROSITY: MOLDIC, PIN POINT VUGS, INTERGRANULAR
			50-90% ALTERED; SUBHEDRAL
			GRAIN SIZE: MICROCRYSTALLINE
			RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION
			OTHER FEATURES: PLATY
			FOSSILS: MOLLUSKS

- 403.2 404.4 DOLOSTONE; VERY LIGHT ORANGE 10% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30%, ORGANICS-10% OTHER FEATURES: CHALKY, PLATY
- 404.4 408 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: MOLDIC, PIN POINT VUGS, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: PLATY FOSSILS: MOLLUSKS
- 408 409.6 DOLOSTONE; VERY LIGHT ORANGE 10% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30%, ORGANICS-05% OTHER FEATURES: CHALKY, PLATY
- 409.6 414.8 DOLOSTONE; VERY LIGHT ORANGE 15% POROSITY: MOLDIC, PIN POINT VUGS, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: PLATY FOSSILS: MOLLUSKS, CORAL
- 414.8 416.9 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 07% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-50%, ORGANICS-05% OTHER FEATURES: CHALKY, PLATY

52 Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Plantation Well Site

- 416.9 418.5 PEAT; BLACK 05% POROSITY: INTERGRANULAR; UNCONSOLIDATED SEDIMENTARY STRUCTURES: FISSILE
- 418.5 425.1 DOLOSTONE; VERY LIGHT ORANGE 07% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-50%, ORGANICS-05% OTHER FEATURES: CHALKY, PLATY
- 425.1 425.3 PEAT; BLACK 05% POROSITY: INTERGRANULAR; UNCONSOLIDATED SEDIMENTARY STRUCTURES: FISSILE
- 425.3 426.1 DOLOSTONE; GRAYISH ORANGE 20% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-04% OTHER FEATURES: SUCROSIC
- 426.1 430 DOLOSTONE; GRAYISH ORANGE 10% POROSITY: INTERGRANULAR; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: MOTTLED ACCESSORY MINERALS: SILT-SIZE DOLOMITE-30%, ORGANICS-05% OTHER FEATURES: CALCAREOUS
- 430 435.3 DOLOSTONE; MODERATE BROWN ACCESSORY MINERALS: CHERT- % OTHER FEATURES: POOR SAMPLE
- 435.3 465.3 PACKSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 25% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: OOLITE, INTRACLASTS, SKELETAL GRAIN SIZE: MEDIUM; RANGE: MICROCRYSTALLINE TO VERY COARSE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-05% OTHER FEATURES: WEATHERED FOSSILS: OOLITES, FOSSIL FRAGMENTS, BRYOZOA, MOLLUSKS
- 465.3 470.7 WACKESTONE; GRAYISH ORANGE 15% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: INTRACLASTS, CALCILUTITE, SKELTAL CAST

GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ORGANICS-10% OTHER FEATURES: WEATHERED, CHALKY FOSSILS: BENTHIC FORAMINIFERA CUSHMANIA SP ORGANIC LAMINATIONS THROUGHOUT; CHALKY IN PARTS

- 470.7 483.3 PACKSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, PIN POINT VUGS, MOLDIC GRAIN TYPE: INTRACLASTS, CALCILUTITE, SKELTAL CAST GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: WEATHERED FOSSILS: BENTHIC FORAMINIFERA, CORAL CUSHMANIA SP.
- 483.3 487.6 MUDSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 10% POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION ACCESSORY MINERALS: ORGANICS-01%
- 487.6 493.3 WACKESTONE; GRAYISH ORANGE TO GRAYISH BROWN 15% POROSITY: INTERGRANULAR, PIN POINT VUGS, MOLDIC GRAIN TYPE: CRYSTALS, INTRACLASTS, SKELTAL CAST GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS-01% OTHER FEATURES: WEATHERED FOSSILS: BENTHIC FORAMINIFERA CUSHMANIA SP. INCREASED WEATHERING WITH DEPTH
- 493.3 500.7 MUDSTONE; VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE, INTRACLASTS, SKELTAL CAST GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-02% OTHER FEATURES: WEATHERED FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS CUSHMANIA SP. DOLOMITE CRYSTAL LINED VUGS AT BOTTOM OF

INTERVAL

- 500.7 530.5 WACKESTONE; GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, PIN POINT VUGS, MOLDIC GRAIN TYPE: INTRACLASTS, CALCILUTITE, OOLITE GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS-02% FOSSILS: BENTHIC FORAMINIFERA, OOLITES, MOLLUSKS, BRYOZOA CUSHMANIA SP. VARIABLE INDURATION THROUGHOUT, RANGING FROM POOR TO GOOD
- 530.5 531.9 PACKSTONE; GRAYISH BROWN TO VERY LIGHT ORANGE 20% POROSITY: VUGULAR, PIN POINT VUGS, INTERGRANULAR GRAIN TYPE: CRYSTALS, OOLITE, INTRACLASTS GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-50%, LIMONITE-05% FOSSILS: OSTRACODS, BENTHIC FORAMINIFERA, BRYOZOA MOLLUSKS CUSHMANIA SP. PARTIALLY DOLOMITIZED; EXTREMELY REACTIVE TO HCL
- 531.9 539.7 WACKESTONE; VERY LIGHT ORANGE 15% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: INTRACLASTS, CALCILUTITE, OOLITE GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS-02%, DOLOMITE-15% FOSSILS: BENTHIC FORAMINIFERA, OOLITES CUSHMANIA SP. PARTIALLY DOLOMITIZED; EXTREMELY REACTIVE TO HCL
- 539.7 544.6 PACKSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 20% POROSITY: MOLDIC, PIN POINT VUGS, INTERGRANULAR GRAIN TYPE: INTRACLASTS, CRYSTALS, SKELTAL CAST GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT SEDIMENTARY STRUCTURES: GRADED BEDDING ACCESSORY MINERALS: DOLOMITE-30%, LIMONITE-02% FOSSILS: BENTHIC FORAMINIFERA, BRYOZOA, OSTRACODS MOLLUSKS CUSHMANIA SP. PARTIALLY DOLOMITIZED; EXTREMELY REACTIVE TO HCL; GRADING TO LESS DOLOMITIZATION

544.6	-	546.4	WACKESTONE; VERY LIGHT ORANGE 25% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: INTRACLASTS, SKELTAL CAST, CALCILUTITE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: LIMONITE-02% OTHER FEATURES: WEATHERED FOSSILS: BENTHIC FORAMINIFERA, OSTRACODS, MOLLUSKS CUSHMANIA SP.
546.4	-	550	WACKESTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 20% POROSITY: PIN POINT VUGS, INTERGRANULAR, MOLDIC GRAIN TYPE: CRYSTALS, INTRACLASTS, SKELTAL CAST GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT SEDIMENTARY STRUCTURES: GRADED BEDDING ACCESSORY MINERALS: DOLOMITE-50%, LIMONITE-02% FOSSILS: BENTHIC FORAMINIFERA CUSHMANIA SP. PARTIALLY DOLOMITIZED; REACTIVE TO HCL GRADES TO INCREASED DOLOMITIZATION
550 -	5	56.2	DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 20% POROSITY: VUGULAR, PIN POINT VUGS, INTERCRYSTALLINE 90-100% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION ACCESSORY MINERALS: CALCITE-01%

- OTHER FEATURES:
- 556.2 557.1 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 20% POROSITY: MOLDIC, VUGULAR, PIN POINT VUGS 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION ACCESSORY MINERALS: CALCITE-01%, ORGANICS-05% FOSSILS: BRYOZOA
- 557.1 559.3 PEAT; BLACK 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY POOR INDURATION CEMENT TYPE(S): ORGANIC MATRIX
- 559.3 569.1 PACKSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: INTRACLASTS, OOLITE CLAST, SKELTAL CAST GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX FOSSILS: OOLITES, BRYOZOA

- 569.1 576.2 DOLOSTONE; MODERATE YELLOWISH BROWN 20% POROSITY: VUGULAR, PIN POINT VUGS, INTERCRYSTALLINE 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-10% OTHER FEATURES: HIGH RECRYSTALLIZATION
- 576.2 577 PACKSTONE; GRAYISH BROWN 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY GRAIN TYPE: INTRACLASTS, OOLITE CLAST GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-50%, ORGANICS-30% OTHER FEATURES: CALCAREOUS PARTIALLY DOLOMITIZED; REACTIVE TO HCL
- 577 578 PEAT; BLACK 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY POOR INDURATION CEMENT TYPE(S): ORGANIC MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED
- 578 578.9 PACKSTONE; GRAYISH BROWN 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY GRAIN TYPE: INTRACLASTS GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: ORGANICS-10% OTHER FEATURES: CALCAREOUS FOSSILS: BRYOZOA
- 578.9 580.6 PEAT; BLACK 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY POOR INDURATION CEMENT TYPE(S): ORGANIC MATRIX
- 580.6 585 WACKESTONE; GRAYISH BROWN 15% POROSITY: INTERGRANULAR GRAIN TYPE: INTRACLASTS GRAIN SIZE: MICROCRYSTALLINE

RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED, LAMINATED ACCESSORY MINERALS: ORGANICS-30% FOSSIL REMNANTS THROUGHOUT (POSSIBLY BRYOZOA); DOLOMITE CRYSTAL LINED FRACTURE AT 584.4 FT

- 585 585.1 PEAT; BLACK 05% POROSITY: INTERGRANULAR, LOW PERMEABILITY POOR INDURATION CEMENT TYPE(S): ORGANIC MATRIX
- 585.1 593.6 WACKESTONE; GRAYISH BROWN 15% POROSITY: INTERGRANULAR GRAIN TYPE: INTRACLASTS GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: INTERBEDDED, LAMINATED ACCESSORY MINERALS: ORGANICS-20% FOSSILS: BRYOZOA, OSTRACODS, BENTHIC FORAMINIFERA LAST 2 FEET GRADE TO INCREASED DOLOMITIZATION
- 593.6 596.1 DOLOSTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN 25% POROSITY: INTERCRYSTALLINE, INTERGRANULAR PIN POINT VUGS; 50-90% ALTERED; EUHEDRAL GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM GOOD INDURATION ACCESSORY MINERALS: CALCARENITE- % OTHER FEATURES: CALCAREOUS CALCARENITE CONTENT ~40% IN UPPER 2 FT OF INTERVAL, THEN GRADES TO ~5% AT BOTTOM OF INTERVAL
- 596.1 600.6 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN 15% POROSITY: VUGULAR; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION
- 600.6 601.3 DOLOSTONE; GRAYISH ORANGE 25% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO MEDIUM GOOD INDURATION OTHER FEATURES: WEATHERED
- 601.3 605.5 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 20% POROSITY: VUGULAR, PIN POINT VUGS; 90-100% ALTERED SUBHEDRAL

GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO MEDIUM GOOD INDURATION

- 605.5 610.5 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN 20% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS, VUGULAR 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO MEDIUM GOOD INDURATION OTHER FEATURES: WEATHERED, SUCROSIC
- 610.5 630 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 25% POROSITY: INTERCRYSTALLINE, VUGULAR, PIN POINT VUGS 90-100% ALTERED; ANHEDRAL GRAIN SIZE: MEDIUM; RANGE: CRYPTOCRYSTALLINE TO COARSE GOOD INDURATION SHELL FRAGMENTS, TOO ALTERED TO IDENTIFY
- 630 645.7 DOLOSTONE; MODERATE YELLOWISH BROWN 15% POROSITY: FRACTURE, PIN POINT VUGS; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION OTHER FEATURES: POOR SAMPLE POOR SAMPLE RECOVERY AND ACQUIRED SAMPLE HAS BEEN HIGHLY DISTURBED FROM THE CORING PROCESS; VERY DENSE; DOLOSILT OBSERVED IN CORING DISCHARGE
- 645.7 647.1 DOLOSTONE; MODERATE ORANGE PINK 25% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS, VUGULAR 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION OTHER FEATURES: WEATHERED, SUCROSIC
- 647.1 651.8 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN 25% POROSITY: PIN POINT VUGS, MOLDIC, INTERCRYSTALLINE 90-100% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-02%, QUARTZ-02% FOSSILS: PLANT REMAINS, MOLLUSKS, ECHINOID VUGS LINED WITH QUARTZ "SNOWBALLS" AT 651 FT BLS
- 651.8 652.2 SILT-SIZE DOLOMITE; GRAYISH ORANGE TO DARK YELLOWISH BROWN 07% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ORGANICS-25%

- 652.2 654.8 SILT-SIZE DOLOMITE; GRAYISH ORANGE TO DARK YELLOWISH BROWN 07% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY GOOD INDURATION
- 654.8 657.9 DOLOSTONE; GRAYISH ORANGE 07% POROSITY: PIN POINT VUGS, LOW PERMEABILITY 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION
- 657.9 660.1 SILT-SIZE DOLOMITE; GRAYISH ORANGE TO DARK YELLOWISH BROWN 07% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED
- 660.1 664.4 DOLOSTONE; GRAYISH ORANGE 10% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS LOW PERMEABILITY; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION ACCESSORY MINERALS: QUARTZ-02% FOSSILS ARE TOO ALTERED TO IDENTIFY; VUGS LINED WITH WEATHERED QUARTZ CRYSTALS
- 664.4 667 SILT-SIZE DOLOMITE; GRAYISH ORANGE TO DARK YELLOWISH BROWN 10% POROSITY: INTERCRYSTALLINE; GOOD INDURATION FOSSILS: MOLLUSKS
- 667 673.5 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN 15% POROSITY: PIN POINT VUGS, MOLDIC, VUGULAR 90-100% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO COARSE; GOOD INDURATION FOSSILS: MOLLUSKS, ECHINOID
- 673.5 673.9 DOLOSTONE; VERY LIGHT ORANGE 05% POROSITY: LOW PERMEABILITY; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE; GOOD INDURATION ACCESSORY MINERALS: CALCILUTITE-30% OTHER FEATURES: CALCAREOUS
- 673.9 677.2 DOLOSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 20% POROSITY: PIN POINT VUGS, INTERCRYSTALLINE 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION

ACCESSORY MINERALS: CALCILUTITE-40% OTHER FEATURES: CALCAREOUS FOSSILS: BENTHIC FORAMINIFERA CUSHMANIA SP. ABUNDANT DICTYOCONUS SP

- 677.2 680.2 SILT-SIZE DOLOMITE; VERY LIGHT ORANGE TO GRAYISH BROWN 15% POROSITY: INTERCRYSTALLINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ORGANICS-20%, CHERT-05% CALCARENITE-20% OTHER FEATURES: CALCAREOUS, WEATHERED INTERSTITIAL CHERT; ORGANIC LAMINAE MOST ABUNDANT IN FIRST 2 FEET OF INTERVAL
- 680.2 683.7 WACKESTONE; VERY LIGHT ORANGE TO GRAYISH BROWN 15% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: INTRACLASTS, OOLITE GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO COARSE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: SILT-SIZE DOLOMITE-15%, ORGANICS-10% FOSSILS: BENTHIC FORAMINIFERA, OOLITES
- 683.7 694.2 PEAT; DARK BROWN 05% POROSITY: LOW PERMEABILITY; POOR INDURATION CEMENT TYPE(S): ORGANIC MATRIX SEDIMENTARY STRUCTURES: FISSILE
- 694.2 703.2 PACKSTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE 15% POROSITY: PIN POINT VUGS, INTERGRANULAR GRAIN TYPE: CRYSTALS, INTRACLASTS GRAIN SIZE: MEDIUM; RANGE: CRYPTOCRYSTALLINE TO COARSE GOOD INDURATION ACCESSORY MINERALS: ORGANICS-02% INDURATION RANGES FROM MODERATE TO GOOD
- 703.2 710.2 AS ABOVE INTERSTITIAL ORGANICS AND ORGANIC LAMINAE
- 710.2 776.7 PACKSTONE; GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: INTRACLASTS, OOLITE, SKELTAL CAST GRAIN SIZE: MEDIUM; RANGE: MICROCRYSTALLINE TO VERY COARSE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX FOSSILS: OOLITES, BENTHIC FORAMINIFERA, MOLLUSKS, ECHINOID
- 776.7 778.4 PACKSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE

20% POROSITY: INTERGRANULAR, VUGULAR, PIN POINT VUGS GRAIN TYPE: INTRACLASTS, CRYSTALS GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO MEDIUM GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: CALCITE-10% FOSSILS: CORAL, MOLLUSKS, OOLITES DOG TOOTH CALCITE LINED VUGS 778.4 - 808 PACKSTONE; GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, PIN POINT VUGS GRAIN TYPE: INTRACLASTS, OOLITE, SKELTAL CAST GRAIN SIZE: MEDIUM; RANGE: MICROCRYSTALLINE TO VERY COARSE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX FOSSILS: OOLITES, BENTHIC FORAMINIFERA, ECHINOID, MOLLUSKS WACKESTONE; VERY LIGHT ORANGE 808 - 855 25% POROSITY: MOLDIC, VUGULAR GRAIN TYPE: CALCILUTITE, SKELTAL CAST GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: REEFAL, WEATHERED FOSSILS: CORAL, MOLLUSKS ABUNDANT CORAL CASTS; VARIABLE DENSITY THROUGHOUT THE **INTERVAL** NO SAMPLES 855 - 869.5 CARBONATE SAND AND SILT ALONG WITH ORGANIC MATERIAL WERE **OBSERVED IN THE DRILLING DISCHARGE** 869.5 - 897.4 WACKESTONE; VERY LIGHT ORANGE 25% POROSITY: MOLDIC, VUGULAR GRAIN TYPE: CALCILUTITE, SKELTAL CAST GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: REEFAL, WEATHERED FOSSILS: CORAL, MOLLUSKS ABUNDANT CORAL CASTS 897.4 - 900.4 WACKESTONE; GRAYISH ORANGE TO VERY LIGHT ORANGE **15% POROSITY: INTERGRANULAR GRAIN TYPE: INTRACLASTS** GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX

SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: PYRITE-25%

- 900.4 902.8 AS ABOVE NO PYRITE
- 902.8 923.2 PACKSTONE; GRAYISH ORANGE TO GRAYISH BROWN 15% POROSITY: INTERGRANULAR GRAIN TYPE: SKELTAL CAST, INTRACLASTS, OOLITE GRAIN SIZE: MEDIUM; RANGE: MICROCRYSTALLINE TO VERY COARSE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-15% OTHER FEATURES: DOLOMITIC, FOSSILIFEROUS, PLATY FOSSILS: BENTHIC FORAMINIFERA, OSTRACODS, RUDISTIDS HELICOSTIGINA GYRALIS DOLOMITIZATION INCREASES WITH DEPTH

923.2 - 930.5 DOLOSTONE; DARK YELLOWISH BROWN TO LIGHT YELLOWISH ORANGE 15% POROSITY: MOLDIC, INTERCRYSTALLINE; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: MEDIUM; RANGE: MICROCRYSTALLINE TO COARSE GOOD INDURATION OTHER FEATURES: WEATHERED FOSSILS: BENTHIC FORAMINIFERA HELICOSTIGINA GYRALIS POROSITY DECREASES WITH DEPTH SUCROSIC IN PARTS; FOSSILS APPEAR TO BE DOLOMITIZED VERSIONS OF THE SPECIES IN THE ABOVE LAYER, BUT ARE TOO ALTERED TO ID

- 930.5 935.1 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 10% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION FOSSILS: BENTHIC FORAMINIFERA HELICOSTIGINA GYRALIS VERY DENSE
- 935.1 946.2 WACKESTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 15% POROSITY: INTERGRANULAR, MOLDIC GRAIN TYPE: INTRACLASTS, SKELTAL CAST, OOLITE GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-10% FOSSILS: BENTHIC FORAMINIFERA, BRYOZOA
- 946.2 961.6 PACKSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, MOLDIC, VUGULAR

GRAIN TYPE: INTRACLASTS, SKELTAL CAST GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO MEDIUM GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-10% FOSSILS: MOLLUSKS, OSTRACODS, BRYOZOA

- 961.6 967.4 PACKSTONE; GRAYISH ORANGE 15% POROSITY: INTERGRANULAR GRAIN TYPE: INTRACLASTS, CRYSTALS GRAIN SIZE: COARSE; RANGE: CRYPTOCRYSTALLINE TO COARSE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-50% FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS
- 967.4 971 DOLOSTONE; MODERATE YELLOWISH BROWN 20% POROSITY: INTERCRYSTALLINE, MOLDIC; 90-100% ALTERED EUHEDRAL GRAIN SIZE: COARSE; RANGE: MICROCRYSTALLINE TO COARSE GOOD INDURATION OTHER FEATURES: SUCROSIC FOSSILS: BENTHIC FORAMINIFERA
- 971 985 PACKSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, MOLDIC GRAIN TYPE: INTRACLASTS, OOLITE GRAIN SIZE: MEDIUM; RANGE: MICROCRYSTALLINE TO MEDIUM GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-15% FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS, OSTRACODS
- 985 988.3 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 15% POROSITY: INTERCRYSTALLINE; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MEDIUM; RANGE: MICROCRYSTALLINE TO MEDIUM GOOD INDURATION FOSSILS: BENTHIC FORAMINIFERA
- 988.3 999.8 DOLOSTONE; DARK YELLOWISH BROWN 05% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION
- 999.8 1001.9 DOLOSTONE; GRAYISH ORANGE 10% POROSITY: INTERCRYSTALLINE, MOLDIC; 90-100% ALTERED SUBHEDRAL

GRAIN SIZE: MEDIUM; RANGE: CRYPTOCRYSTALLINE TO COARSE GOOD INDURATION FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS

- 1001.9 1026 PACKSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, MOLDIC GRAIN TYPE: INTRACLASTS, CRYSTALS, OOLITE GRAIN SIZE: MEDIUM; RANGE: MICROCRYSTALLINE TO COARSE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS
- 1026 1039.4 DOLOSTONE; GRAYISH ORANGE 15% POROSITY: INTERGRANULAR, PIN POINT VUGS, MOLDIC 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO COARSE MODERATE INDURATION OTHER FEATURES: WEATHERED VARIABLE INDURATION THROUGHOUT, RANGING FROM MODERATE TO GOOD; SUCROSIC IN PARTS; FOSSILS TOO WEATHERED TO ID
- 1039.4 1068.6 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 20% POROSITY: VUGULAR, INTERCRYSTALLINE; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO COARSE; GOOD INDURATION ACCESSORY MINERALS: QUARTZ-02% FOSSILS: BENTHIC FORAMINIFERA ROUNDED QUARTZ CLUSTERS LINING SOME VUGS
- 1068.6 1071.4 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN 15% POROSITY: INTERCRYSTALLINE; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: COARSE; RANGE: MICROCRYSTALLINE TO COARSE GOOD INDURATION OTHER FEATURES: WEATHERED
- 1071.4 1083.8 MUDSTONE; VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR GRAIN TYPE: CRYSTALS, INTRACLASTS GRAIN SIZE: MICROCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: LAMINATED, INTERBEDDED ACCESSORY MINERALS: DOLOMITE-05%
- 1083.8 1090 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH BROWN 10% POROSITY: VUGULAR; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION

SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: QUARTZ-02% ROUNDED QUARTZ CLUSTER LINED VUGS

- 1090 1102.2 MUDSTONE; VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR GRAIN TYPE: CRYSTALS, INTRACLASTS GRAIN SIZE: MICROCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: LAMINATED, INTERBEDDED ACCESSORY MINERALS: DOLOMITE-05%
- 1102.2 1104.6 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN 10% POROSITY: VUGULAR; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: INTERBEDDED ACCESSORY MINERALS: QUARTZ-05%
- 1104.6 1117.2 MUDSTONE; VERY LIGHT ORANGE 20% POROSITY: INTERGRANULAR GRAIN TYPE: CRYSTALS, INTRACLASTS GRAIN SIZE: MICROCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX SEDIMENTARY STRUCTURES: LAMINATED, INTERBEDDED ACCESSORY MINERALS: DOLOMITE-05%
- 1117.2 1138.3 MUDSTONE; VERY LIGHT ORANGE TO MODERATE YELLOWISH BROWN 20% POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CRYSTALS, INTRACLASTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO FINE; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT SEDIMENTARY STRUCTURES: LAMINATED, INTERBEDDED ACCESSORY MINERALS: DOLOMITE-50%, QUARTZ-05% ALTERNATING LAYERS OF THE LIMESTONE AND DOLOSTONE DESCRIBED ABOVE; QUARTZ LINED VUGS
- 1138.3 1151.4 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN 10% POROSITY: MOLDIC, VUGULAR, INTERCRYSTALLINE 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO COARSE; GOOD INDURATION ACCESSORY MINERALS: QUARTZ-02% FOSSILS: BENTHIC FORAMINIFERA, MOLLUSKS QUARTZ CLUSTER LINED VUGS AND MOLDS
- 1151.4 1161.4 PACKSTONE; VERY LIGHT ORANGE

20% POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: INTRACLASTS, CALCILUTITE GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ-05% FOSSILS: MOLLUSKS GREEN MINERAL, POSSIBLY GLAUCONITE

- 1161.4 1165.5 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH BROWN 10% POROSITY: INTERCRYSTALLINE, MOLDIC, VUGULAR 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: QUARTZ-02% FOSSILS: BENTHIC FORAMINIFERA
- 1165.5 1172.5 WACKESTONE; VERY LIGHT ORANGE 15% POROSITY: INTERGRANULAR GRAIN TYPE: CRYSTALS, INTRACLASTS GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM GOOD INDURATION ACCESSORY MINERALS: DOLOMITE-10%, QUARTZ-02%
- 1172.5 1186 GRAINSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: INTERGRANULAR, MOLDIC, VUGULAR GRAIN TYPE: INTRACLASTS, OOLITE GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: DOLOMITE-20% INTERSTITIAL DOLOSTONE NODULES AND DOLOSTONE LAMINAE
- 1186 1205.8 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN 05% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION EXTREMELY DENSE (SOUNDS LIKE GLASS WHEN PIECES TAPPED TOGETHER)
- 1205.8 1218 DOLOSTONE; DARK YELLOWISH BROWN TO GRAYISH ORANGE 15% POROSITY: VUGULAR, FRACTURE; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION DIFFICULT CORING. FRACTURED APPEARANCE (UNCLEAR HOW MUCH

IS DUE TO THE CORING PROCESS).

- 1218 1235.7 DOLOSTONE; GRAYISH ORANGE 10% POROSITY: INTERCRYSTALLINE, MOLDIC; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: CALCILUTITE-20%, ORGANICS-02% OTHER FEATURES: CALCAREOUS BECOMES MORE CALCAREOUS WITH DEPTH
- 1235.7 1236.4 CLAY; DARK YELLOWISH BROWN TO GRAYISH BROWN 05% POROSITY: INTERGRANULAR ACCESSORY MINERALS: ORGANICS-20%
- 1236.4 1241.1 DOLOSTONE; MODERATE YELLOWISH BROWN TO MODERATE BROWN 10% POROSITY: INTERCRYSTALLINE; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-25%
- 1241.1 1241.5 AS ABOVE
- 1241.5 1241.8 DOLOSTONE; MODERATE YELLOWISH BROWN 10% POROSITY: VUGULAR, INTERCRYSTALLINE; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: QUARTZ-45% OTHER FEATURES: SUCROSIC, WEATHERED INTERSTITIAL QUARTZ
- 1241.8 1249.8 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE 05% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY, VUGULAR 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: MOTTLED ACCESSORY MINERALS: ORGANICS-05%, QUARTZ-02% VERY FEW VUGS, BUT THOSE PRESENT ARE LINED WITH QUARTZ CRYSTALS
- 1249.8 1250 DOLOSTONE; GRAYISH ORANGE 20% POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 90-100% ALTERED; ANHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION OTHER FEATURES: WEATHERED

FOSSILS: MOLLUSKS

- 1250 1321 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN 25% POROSITY: VUGULAR, FRACTURE; 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: IRON STAIN-02% EXTREMELY DENSE. DIFFICULT CORING WITH POSSIBLE BIT DROPS THROUGHOUT. SECONDARY POROSITY ACCOUNTS FOR NEARLY ALL POROSITY OBSERVED. IRON STAINED VUGS 1270-1282.
- 1321 1336 DOLOSTONE; GRAYISH ORANGE 05% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION
- 1336 1344.7 AS ABOVE
- 1344.7 1346.4 DOLOSTONE; VERY LIGHT ORANGE 15% POROSITY: INTERCRYSTALLINE; 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION
- 1346.4 1348.8 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH BROWN 15% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION FOSSILS: MOLLUSKS SUCROSIC IN PARTS. IRON STAINED VUG AT 1347.6.
- 1348.8 1354.7 DOLOSTONE; VERY LIGHT ORANGE 20% POROSITY: INTERCRYSTALLINE, VUGULAR; 90-100% ALTERED ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED OTHER FEATURES: CHALKY
- 1354.7 1380 DOLOSTONE; GRAYISH ORANGE 20% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS 90-100% ALTERED; ANHEDRAL GRAIN SIZE: MEDIUM; RANGE: CRYPTOCRYSTALLINE TO MEDIUM GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ORGANICS-05% OTHER FEATURES: WEATHERED SUCROSIC IN PARTS. ORGANIC AND SILT SIZE DOLOSTONE LAMINAE THROUGHOUT.

- 1380 1387.8 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 15% POROSITY: INTERCRYSTALLINE, VUGULAR; 90-100% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION ACCESSORY MINERALS: ORGANICS-02% FOSSILS: MOLLUSKS
- 1387.8 1402.4 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN 15% POROSITY: VUGULAR, PIN POINT VUGS; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION FOSSILS: MOLLUSKS
- 1402.4 1409.7 DOLOSTONE; VERY LIGHT ORANGE 20% POROSITY: INTERCRYSTALLINE; 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION OTHER FEATURES: CHALKY
- 1409.7 1418 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE 20% POROSITY: PIN POINT VUGS, INTERCRYSTALLINE 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION FOSSILS: MOLLUSKS SUCROSIC IN PARTS. GRADES FROM ANHEDRAL TO SUBHEDRAL WITH DEPTH.
- 1418 1425.7 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN 10% POROSITY: INTERCRYSTALLINE, VUGULAR; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION EUHEDRAL IN PARTS. VUGS DON'T APPEAR CONNECTED.
- 1425.7 1443 DOLOSTONE; BLACK TO MODERATE YELLOWISH BROWN 25% POROSITY: VUGULAR, FRACTURE; 90-100% ALTERED; EUHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION OTHER FEATURES: SUCROSIC
- 1443 1446.2 DOLOSTONE; VERY LIGHT ORANGE TO MODERATE ORANGE PINK 15% POROSITY: PIN POINT VUGS, FRACTURE; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION

70 Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Plantation Well Site

- 1446.2 1463.4 DOLOSTONE; DARK YELLOWISH BROWN TO GRAYISH BROWN 25% POROSITY: VUGULAR, FRACTURE; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION
- 1463.4 1473.6 DOLOSTONE; DARK YELLOWISH BROWN 15% POROSITY: VUGULAR; 90-100% ALTERED; EUHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION
- 1473.6 1489 DOLOSTONE; MODERATE BROWN TO LIGHT OLIVE GRAY 20% POROSITY: VUGULAR, FRACTURE; 90-100% ALTERED SUBHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION OTHER FEATURES: SUCROSIC, WEATHERED
- 1489 1495 DOLOSTONE; LIGHT OLIVE GRAY TO DARK YELLOWISH BROWN 10% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION
- 1495 1498 AS ABOVE
- 1498 1500.3 AS ABOVE
- 1500.3 1503.6 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE GRAY 15% POROSITY: VUGULAR; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: FINE; RANGE: CRYPTOCRYSTALLINE TO FINE GOOD INDURATION
- 1503.6 1512.1 DOLOSTONE; VERY LIGHT ORANGE 10% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED OTHER FEATURES: CHALKY FORMER MUDSTONE
- 1512.1 1512.7 DOLOSTONE; DARK YELLOWISH BROWN 15% POROSITY: VUGULAR; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION
- 1512.7 1515.4 DOLOSTONE; VERY LIGHT ORANGE

10% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED OTHER FEATURES: CHALKY

- 1515.4 1517.3 DOLOSTONE; DARK YELLOWISH BROWN 15% POROSITY: VUGULAR; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION
- 1517.3 1529.6 DOLOSTONE; VERY LIGHT ORANGE 10% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED OTHER FEATURES: CHALKY
- 1529.6 1532.2 DOLOSTONE; GRAYISH ORANGE TO DARK YELLOWISH BROWN 15% POROSITY: FRACTURE, INTERCRYSTALLINE; 90-100% ALTERED ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION
- 1532.2 1532.9 DOLOSTONE; MODERATE GRAY TO MODERATE BROWN 20% POROSITY: VUGULAR; 90-100% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: WEATHERED
- 1532.9 1534.7 DOLOSTONE; GRAYISH ORANGE TO DARK YELLOWISH BROWN 15% POROSITY: FRACTURE, INTERCRYSTALLINE; 90-100% ALTERED ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION
- 1534.7 1535.1 DOLOSTONE; MODERATE GRAY TO MODERATE BROWN 20% POROSITY: VUGULAR; 90-100% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION
- 1535.1 1538.3 DOLOSTONE; GRAYISH ORANGE 15% POROSITY: FRACTURE; 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE

72 Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Plantation Well Site

GOOD INDURATION

- 1538.3 1549.5 DOLOSTONE; MODERATE GRAY TO MODERATE BROWN 25% POROSITY: VUGULAR; 90-100% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MEDIUM; GOOD INDURATION OTHER FEATURES: WEATHERED SUCROSIC IN PARTS
- 1549.5 1551.3 DOLOSTONE; VERY LIGHT ORANGE TO LIGHT GRAY 10% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED
- 1551.3 1552.2 DOLOSTONE; LIGHT OLIVE GRAY TO MODERATE LIGHT GRAY 15% POROSITY: VUGULAR; 90-100% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION
- 1552.2 1555.7 DOLOSTONE; GRAYISH ORANGE TO MODERATE GRAY 10% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS LOW PERMEABILITY; 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION
- 1555.7 1557 DOLOSTONE; VERY LIGHT ORANGE 20% POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION OTHER FEATURES: WEATHERED
- 1557 1570.6 DOLOSTONE; VERY LIGHT ORANGE 25% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION ACCESSORY MINERALS: CLAY-02% FOSSILS: BENTHIC FORAMINIFERA CHALKY IN PARTS
- 1570.6 1577 NO SAMPLES
- 1577 1618 DOLOSTONE; VERY LIGHT ORANGE 25% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; MODERATE INDURATION ACCESSORY MINERALS: CLAY-02%

FOSSILS: BENTHIC FORAMINIFERA

- 1618 1624.1 DOLOSTONE; VERY LIGHT ORANGE TO LIGHT GRAY 15% POROSITY: INTERCRYSTALLINE; 90-100% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED OTHER FEATURES: VARIEGATED
- 1624.1 1630.9 DOLOSTONE; PINKISH GRAY TO VERY LIGHT ORANGE 20% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO MICROCRYSTALLINE GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED
- 1630.9 1637 DOLOSTONE; VERY LIGHT ORANGE 25% POROSITY: INTERCRYSTALLINE, PIN POINT VUGS 90-100% ALTERED; ANHEDRAL GRAIN SIZE: FINE; RANGE: MICROCRYSTALLINE TO MEDIUM MODERATE INDURATION OTHER FEATURES: WEATHERED
- 1637 1640.2 DOLOSTONE; PINKISH GRAY TO LIGHT GRAY 05% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ANHYDRITE-45% ANHYDRITE CONTENT INCREASES WITH DEPTH
- 1640.2 1649.1 ANHYDRITE; PINKISH GRAY TO DARK YELLOWISH BROWN 01% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY GOOD INDURATION
- 1649.1 1657.6 DOLOSTONE; VERY LIGHT ORANGE TO MODERATE DARK GRAY 01% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ANHYDRITE-50%
- 1657.6 1673 ANHYDRITE; DARK YELLOWISH BROWN TO PINKISH GRAY 01% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY GOOD INDURATION ACCESSORY MINERALS: DOLOMITE-10%, ORGANICS-02%

74 Hydrogeology, Water Quality, and Well Construction at the ROMP 132 - Blitch Plantation Well Site

- 1673 1675.2 ANHYDRITE; DARK YELLOWISH BROWN TO VERY LIGHT ORANGE 01% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY GOOD INDURATION ACCESSORY MINERALS: DOLOMITE-40%
- 1675.2 1677.2 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH BROWN 01% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION ACCESSORY MINERALS: ANHYDRITE-30%
- 1677.2 1681.1 DOLOSTONE; VERY LIGHT ORANGE 01% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: CRYPTOCRYSTALLINE TO FINE; GOOD INDURATION SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ANHYDRITE-10% FOSSILS: OOLITES ANHYDRITE FILLED MOLDS AND PIN POINT VUGS
- 1681.1 1685.3 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH BROWN 01% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY 90-100% ALTERED; ANHEDRAL GRAIN SIZE: CRYPTOCRYSTALLINE; GOOD INDURATION SEDIMENTARY STRUCTURES: BIOTURBATED
- 1685.3 1687 ANHYDRITE; VERY LIGHT GRAY TO MODERATE DARK GRAY 01% POROSITY: INTERCRYSTALLINE, LOW PERMEABILITY GOOD INDURATION ACCESSORY MINERALS: DOLOMITE-10%

1687 TOTAL DEPTH

SLUG TEST - DATA ACQUISITION SHEET

			••••••
neral Information			
Wellsite: R	OMP 132 - Blitch Plantation	I	Date: 6/12/2008
Well: Co	ore Hole	Perform	ned by: A. Janosik
Well Depth (ft bls)	110	Test Interval (ft - ft bls)	71 - 110
Test Casing Height (ft als)	4.04	Date of Last Development	6/11/2008
Test Casing Diameter (in)	4	Initial Static WL (ft btoc)	68.21
Test Casing Type	HW	Final Static WL (ft btoc)	68.23
Test Interval Length (ft)	39	Slot Size & Filter Pack Type	none
nnulus Casing Height (ft als)	none	Initial Annulus WL (ft btoc)	none

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	0603300	test casing	78.00	0.06	9.79 / 9.84
Transducer #2	-		annulus	-	-	-
Transducer #3	15	0603325	pressure		-0.01	
	Spacer Le Spacer	OD. ents: tested	not used not used through HW	·	∗ †	max possible rebound (or max displ. falling head test)
		casing	with no pac		¥	max possible displ. (rising head test)

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	1.5	0.75	0.25	1.5
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	9.84	9.84	9.84	9.84
Pre-test XD #2	-	-	-	-
Expected Displacement (ft)	1.051	0.884	0.319	1.421
Observed Displacement (ft)	0.739	0.710	0.225	1.232
Slug Discrepancy (%)	30%	20%	29%	13%
Max Rebound above Static	none	none	none	none
Post-test XD #1	9.84	9.84	9.84	9.84
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST1a_71-110	ROMP132_ST1b_71-110	ROMP132_ST1c_71-110	ROMP132_ST1d_71-10
Specific Conductance (uS)	382.7	382.7	382.7	382.7
Temperature (C)	23.9	23.9	23.9	23.9
Lithology C	Dcala Limestone - foss	siliferous packstone to	wackestone	
K _h (ft/day)	55.96	53.99	88.46	65.29
Other				
 Comments L	Jsed KGS Model (199	4) solution, and transla	tion method during ana	alysis.

Figure E-1. Field sheet for the slug test conducted between 71 and 110 feet below land surface (slug test 1) at the ROMP 132 well site in Marion County.

ST NO. 1

eneral Information				
Wellsite: R0	OMP 132 - Blitch Plantation		Date: 7/9/2008	
Well: Co	ore Hole	Performed by: A. Janosik		
Well Depth (ft bls)	175	Test Interval (ft - ft bls)	132-175	
Test Casing Height (ft als)	3.66	Date of Last Development	7/8/2008	
Test Casing Diameter (in)	4	Initial Static WL (ft btoc)	68.10	
Test Casing Type	HW	Final Static WL (ft btoc)	68.09	
Test Interval Length (ft)	43	Slot Size & Filter Pack Type	none	
nnulus Casing Height (ft als)	none	Initial Annulus WL (ft btoc)	none	

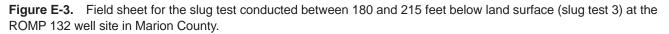
ST NO.

2

-	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	0603300	test casing	78.00	0.07	9.90 / 9.98
Transducer #2	-		annulus	-	-	-
Transducer #3	15	0603325	pressure		0.00	
	Spacer Le Spacer	OD. ents: tested	not used not used through HW		★	max possible rebound (or max displ. falling head test) ∇ static WL
Note: Reading in Ai	r of the Trend		with no pac		¥	max possible displ. (rising head test)

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	1.5	0.75	0.25	1.5
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	9.98	9.98	9.98	9.98
Pre-test XD #2	-	-	-	-
Expected Displacement (ft)	1.342	0.798	0.290	1.450
Observed Displacement (ft)	1.487	0.747	0.308	1.487
Slug Discrepancy (%)	11%	6%	6%	3%
Max Rebound above Static	none	none	none	none
Post-test XD #1	9.98	9.98	9.98	9.98
Residual Dev. from $\rm H_{o}$ (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST2a_132-175	ROMP132_ST2b_132-175	ROMP132_ST2c_132-175	ROMP132_ST2d_132-
Specific Conductance (uS)	407.9	407.9	407.9	407.9
Temperature (C)	22.9	22.9	22.9	22.9
Lithology	Top of Avon Park - Mo	stly dolostone w/ muds	stone bed in bottom 10-	ft
K _h (ft/day)	8.289	11.76	10.51	8.375
Other				
Comments	Used KGS Model (199	4) solution, and transla	tion method during ana	alysis.

Notes: Slug Discrepancy <10%; Residual Deviation from $H_0 < 5\%$; and Maximum Rebound < Spacer Placement above Static


Figure E-2. Field sheet for the slug test conducted between 132 and 175 feet below land surface (slug test 2) at the ROMP 132 well site in Marion County.

SLUG TEST - DATA ACQUISITION SHEET

			ST NO.	3
eneral Information				
Wellsite: RC	MP 132 - Blitch Plantation		Date: 7/10/2008	
Well: Co	re Hole	Perform	med by: A. Janosik	
Well Depth (ft bls)	215	Test Interval (ft - ft bls)	180-215	
Test Casing Height (ft als)	4.85	Date of Last Development	7/10/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	69.39	
Test Casing Type	NQ	Final Static WL (ft btoc)	69.35	
Test Interval Length (ft)	35	Slot Size & Filter Pack Type	none	
Annulus Casing Height (ft als)	0	Initial Annulus WL (ft btoc)	64.53	

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	69.00	0.06	2.61 / 2.68
Transducer #2	15	0603300	annulus	78.00	0.06	13.47 / 13.51
Transducer #3	15	0603325	pressure		-0.01	
	Data Log Spacer Le Spacer Comme	OD. 1.	r (CR800 - S 5-feet 625-inches	<u>5N 3</u> 573)	* ¥	max possible rebound (or max displ. falling head test) ∇ static WL
					↓	max possible displ. (rising head

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	1.5	0.75	0.25	0.10
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	2.69	2.69	2.69	2.69
Pre-test XD #2	13.51	13.51	13.51	13.51
Expected Displacement (ft)	1.523	0.783	0.283	0.116
Observed Displacement (ft)	2.183	1.189	0.428	0.174
Slug Discrepancy (%)	43%	52%	51%	50%
Max Rebound above Static	0.624	0.450	0.196	0.087
Post-test XD #1	2.69	2.69	2.69	2.69
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST3a_180-215	ROMP132_ST3b_180-215	ROMP132_ST3c_180-215	ROMP132_ST3d_180-
Specific Conductance (uS)	427.2	427.2	427.2	427.2
Temperature (C)	22.5	22.5	22.5	22.5
Lithology A	von Park - packstone	w/ bottom 5-ft of dens	e, possibly fractured do	olostone
K _h (ft/day)	130	145.4	154.4	150
Other				
Comments L	Jsed Butler (1998) sol	ution, and translation n	nethod during analysis.	

ST NO. 3 cont. General Information Wellsite: ROMP 132 - Blitch Plantation Date: 7/10/2008 Well: Core Hole Performed by: A. Janosik Well Depth (ft bls) 215 Test Interval (ft - ft bls) 180-215 4.85 Test Casing Height (ft als) Date of Last Development 7/10/2008 Test Casing Diameter (in) 2 3/8 Initial Static WL (ft btoc) 69.39 **Test Casing Type** NQ Final Static WL (ft btoc) 69.35 35 Test Interval Length (ft) Slot Size & Filter Pack Type none 0 64.53 Annulus Casing Height (ft als) Initial Annulus WL (ft btoc) Set-up Information Serial No. Reading in air (ft) Exp/Obsvd Submergence (ft) Type (psi) Purpose & Depth (ft btoc) Transducer #1 ? test casing 69.00 0.06 15 2.61 / 2.68 Transducer #2 0603300 annulus 0.06 13.47 / 13.51 15 78.00 0603325 Transducer #3 pressure -0.01 15 Data Logger Splinter (CR800 - SN 3573) max possible rebound (or max Spacer Length 5-feet displ. falling head test) Spacer OD. 1.625-inches ∑ _{static WL} Comments: max possible displ. (rising head test) Note: Reading in Air of the Transducer should be < +/-1% of the Full Scale of the Transducer Tost Data

	Test E	Test F	Test G	Test H
Target Diplacement (ft)	1.75			
Initiation method	pneumatic			
Rising/Falling head	rising			
Pre-test XD #1	2.69			
Pre-test XD #2	13.51			
Expected Displacement (ft)	1.660			
bserved Displacement (ft)	2.331			
Slug Discrepancy (%)	40%			
Aax Rebound above Static	0.667			
Post-test XD #1	2.69			
Residual Dev. from H_o (%)	0%			
Data Logger File Name	OMP132_ST3e_180-215			
Specific Conductance (uS)	427.2			
Temperature (C)	22.5			
Lithology A	von Park - packstone w	/ bottom 5-ft of den	se, possibly fractured do	olostone
K _h (ft/day)	135.5			
Other				
Comments U	sed Butler (1998) soluti	on, and translation	method during analysis.	

Figure E-4. Field sheet for the slug test conducted between 180 and 215 feet below land surface (slug test 3) at the ROMP 132 well site in Marion County.

SLUG TEST - DATA ACQUISITION SHEET

			ST NO.	4
neral Information				
Wellsite: ROI	MP 132 - Blitch Plantati	on	Date: 7/22/2008	
Well: Cor	e Hole	Perform	ned by: A. Janosik	
Well Depth (ft bls)	285	Test Interval (ft - ft bls)	233-285	
Test Casing Height (ft als)	4.08	Date of Last Development	7/22/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	68.58	
Test Casing Type	NQ	Final Static WL (ft btoc)	68.56	
Test Interval Length (ft)	52	Slot Size & Filter Pack Type	none	
nnulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	64.67	

Set-up Infor	mation					
	Type (psi)	Serial No.	Purpose 8	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	68.60	0.02	3.02 / 2.97
Transducer #2	15	0603300	annulus	78.00	0.02	13.33 / 13.43
Transducer #3	15	0603325	pressure		-0.07	
	Data Lo Spacer Le Spacer Comme	OD. 1.	r (CR800 - 5 5-feet 625-inches	<u>SN 3</u> 573) 	* <u>-</u> *	max possible rebound (or max displ. falling head test)
Noto: Pooding in Ai	r of the Transd		$< \pm 1\%$ of the	Full Scale of the Tra	↓	max possible displ. (rising head test)

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	1.0	0.5	0.25	1.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	2.97	2.97	2.98	2.98
Pre-test XD #2	13.42	13.44	13.44	13.44
Expected Displacement (ft)	1.029	0.536	0.239	1.022
Observed Displacement (ft)	1.530	0.819	0.377	1.486
Slug Discrepancy (%)	49%	53%	58%	45%
Max Rebound above Static	0.536	0.333	0.167	0.536
Post-test XD #1	2.97	2.98	2.98	2.98
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name R	OMP132_ST4a_233-285	ROMP132_ST4b_233-285	ROMP132_ST4c_233-285	ROMP132_ST4d_2333-2
Specific Conductance (uS)	426.0	426.0	426.0	426.0
Temperature (C)	22.09	22.09	22.09	22.09
Lithology Av	von Park - fractured c	olostone and packsto	ne	
K _h (ft/day)	78.83	89.79	100.1	84.48
Other				
Comments U	sed Butler (1998) solu	ution, and translation n	nethod during analysis.	•

Figure E-5. Field sheet for the slug test conducted between 233 and 285 feet below land surface (slug test 4) at the ROMP 132 well site in Marion County.

			ST NO.	5
neral Information				
Wellsite: RO	MP 132 - Blitch Plantation		Date: 7/29/2008	
Well: Cor	e Hole	Performed by: A. Janosik		
Well Depth (ft bls)	360	Test Interval (ft - ft bls)	303-360	
Test Casing Height (ft als)	4.17	Date of Last Development	7/29/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	68.73	
Test Casing Type	NQ	Final Static WL (ft btoc)	68.70	
Test Interval Length (ft)	57	Slot Size & Filter Pack Type	none	
nnulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	64.66	

Set-up Infor	mation					
	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	68.7	0.06	2.97 / 3.07
Transducer #2	15	0603300	annulus	78.00	0.06	13.34 / 13.48
Transducer #3	15	0603325	pressure		-0.02	
	Data Lo	gger <u>Splinte</u>	r (CR800 - S	SN <u>3</u> 573)	م	max possible rebound (or max
	Spacer Le	ngth	5-feet			displ. falling head test)
	Spacer	OD. <u>1.</u>	625-inches		↓	∇
	Comme	ents:			≜	static WL
Note: Reading in Ai	r of the Transd	ucer should be	< +/-1% of the	Full Scale of the Tra		max possible displ. (rising head test)

Rising/Falling head Pre-test XD #1 Pre-test XD #2 Expected Displacement (ft) Observed Displacement (ft)	1.0 neumatic rising 3.08 13.48 1.008	0.5 pneumatic rising 3.08 13.48 0.551	0.25 pneumatic rising 3.08 13.48	1.0 pneumatic rising 3.08 13.48
Rising/Falling head Pre-test XD #1 Pre-test XD #2 Expected Displacement (ft) Observed Displacement (ft)	rising 3.08 13.48 1.008	rising 3.08 13.48	rising 3.08	rising 3.08
Pre-test XD #1 Pre-test XD #2 Expected Displacement (ft) Observed Displacement (ft)	3.08 13.48 1.008	3.08 13.48	3.08	3.08
Pre-test XD #2 Expected Displacement (ft) Observed Displacement (ft)	13.48 1.008	13.48		
Expected Displacement (ft) Observed Displacement (ft)	1.008		13.48	13.48
Observed Displacement (ft)		0 551		1
	4 507	0.001	0.261	0.906
	1.537	0.877	0.457	1.559
Slug Discrepancy (%)	52%	59%	75%	72%
Max Rebound above Static	0.500	0.312	0.160	0.500
Post-test XD #1	3.08	3.08	3.08	3.08
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name ROMP13	32_ST5a_303-360	ROMP132_ST5b_303-360	ROMP132_ST5c_303-360	ROMP132_ST5d_303-30
Specific Conductance (uS)	411.7	411.7	411.7	411.7
Temperature (C)	22.5	22.5	22.5	22.5
Lithology Avon Pa	ark - interbedde	ed limestone and dolos	tone; large vugs	
K _h (ft/day)	52.74	52.11	54.3	51.42
Other				
Comments Used B	utler (1998) sol	ution, and translation n	nethod during analysis.	

Figure E-6. Field sheet for the slug test conducted between 303 and 360 feet below land surface (slug test 5) at the ROMP 132 well site in Marion County.

SLUG TEST - DATA ACQUISITION SHEET

		ST NO.	6
MP 132 - Blitch Plantatio	n	Date: 8/6/2008	
e Hole	Performed by: A. Janosik		
440	Test Interval (ft - ft bls)	381-440	
4.36	Date of Last Development	8/6/2008	
2 3/8	Initial Static WL (ft btoc)	69.05	
NQ	Final Static WL (ft btoc)	68.91	
59	Slot Size & Filter Pack Type	none	
0.13	Initial Annulus WL (ft btoc)	64.52	
	e Hole 440 4.36 2 3/8 NQ 59	440Test Interval (ft - ft bls)4.36Date of Last Development2 3/8Initial Static WL (ft btoc)NQFinal Static WL (ft btoc)59Slot Size & Filter Pack Type	MP 132 - Blitch PlantationDate: 8/6/2008e HolePerformed by: A. Janosik440Test Interval (ft - ft bls)381-4404.36Date of Last Development2 3/8Initial Static WL (ft btoc)NQFinal Static WL (ft btoc)59Slot Size & Filter Pack Type

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	69	0.03	2.95 / 3.04
Transducer #2	15	0603300	annulus	78	0.02	13.48 / 13.47
Transducer #3	15	0603325	pressure		-0.04	
	Spacer Le Spacer	OD. <u>1.</u> ents: <u>Manua</u>	5-feet 625-inches	<u>) (2"?)</u>	▲ · · · · · · · · · · · · · · · · · · ·	max possible rebound (or max displ. falling head test) ∇ static WL
Note: Reading in Ai			enoid valve		¥	max possible displ. (rising head test)

Target Diplacement (ft) Initiation method Rising/Falling head Pre-test XD #1 Pre-test XD #2 Expected Displacement (ft) Observed Displacement (ft) Slug Discrepancy (%) Max Rebound above Static Post-test XD #1 Residual Dev. from H _o (%)	1.0 pneumatic rising 3.05 13.47 1.058 1.725 63%	0.5 pneumatic rising 3.07 13.47 0.515 0.906	0.25 pneumatic rising 3.08 13.48 0.254 0.471	1.0 pneumatic rising 3.08 13.47 1.000
Rising/Falling head Pre-test XD #1 Pre-test XD #2 Expected Displacement (ft) Observed Displacement (ft) Slug Discrepancy (%) Max Rebound above Static Post-test XD #1	rising 3.05 13.47 1.058 1.725 63%	rising 3.07 13.47 0.515 0.906	rising 3.08 13.48 0.254	rising 3.08 13.47 1.000
Pre-test XD #1 Pre-test XD #2 Expected Displacement (ft) Observed Displacement (ft) Slug Discrepancy (%) Max Rebound above Static Post-test XD #1	3.05 13.47 1.058 1.725 63%	3.07 13.47 0.515 0.906	3.08 13.48 0.254	3.08 13.47 1.000
Pre-test XD #2 Expected Displacement (ft) Observed Displacement (ft) Slug Discrepancy (%) Max Rebound above Static Post-test XD #1	13.47 1.058 1.725 63%	13.47 0.515 0.906	13.48 0.254	13.47 1.000
Expected Displacement (ft) Observed Displacement (ft) Slug Discrepancy (%) Max Rebound above Static Post-test XD #1	1.058 1.725 63%	0.515 0.906	0.254	1.000
Observed Displacement (ft) Slug Discrepancy (%) Max Rebound above Static Post-test XD #1	1.725 63%	0.906	•	
Slug Discrepancy (%) Max Rebound above Static Post-test XD #1	63%		0.471	4 704
Max Rebound above Static Post-test XD #1		700/		1.704
Post-test XD #1		76%	85%	70%
	0.616	0.362	0.188	0.587
Residual Dev. from H _a (%)	3.07	3.08	3.08	3.09
	1%	0%	0%	0%
Data Logger File Name ROMF	P132_ST6a_380-440	ROMP132_ST6b_380-440	ROMP132_ST6c_380-440	ROMP132_ST6d_380-440
Specific Conductance (uS)	426	426	426	426
Temperature (C)	22.2	22.2	22.2	22.2
Lithology Avon	Park - interbedded	dolostone and mud - wad	ckestone w/ possible large	e fracture/cavity
K _h (ft/day)	68.11	70.08	71.40	63.83
Other Used	l Butler (1998) sol	ution, and translation n	nethod during analysis.	
Comments <u>Test i</u>	initiation was don	e using a 2" (smaller th	an solenoid) ball valve	as an experiment to
see if	f slug discrepancy	// test initiation was affered and the second se	ected by valve size	

Figure E-7. Field sheet for the slug test conducted between 381 and 440 feet below land surface (slug test 6) at the ROMP 132 well site in Marion County.

eneral Information				
Wellsite: R	OMP 132 - Blitch Plantation		Date: 8/6/2008	
Well: C	ore Hole	Performed by: A. Janosik		
Well Depth (ft bls)	440	Test Interval (ft - ft bls)	381-440	
Test Casing Height (ft als)	4.36	Date of Last Development	8/6/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	69.05	
Test Casing Type	NQ	Final Static WL (ft btoc)	68.91	
Test Interval Length (ft)	59	Slot Size & Filter Pack Type	none	
nnulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	64.52	
s s ()		· · · · · ·		

ST NO.

6

Set-up Infor	mation					
	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	69	0.03	2.95 / 3.04
Transducer #2	15	0603300	annulus	78	0.02	13.48 / 13.47
Transducer #3	15	0603325	pressure		-0.04	
	Data Log Spacer Le Spacer	Ŭ	r (CR800 - \$ 5-feet 625-inches	<u>SN 3</u> 573)	م	max possible rebound (or max displ. falling head test)
Comments: Solenoid Valve				Ť	∇ static WL	
		ball val	ve but still r	estirction on NQ	¥	max possible displ. (rising head test)
Note: Reading in Ai	r of the Transdu	ucer should be	< +/-1% of the	Full Scale of the Tra	ansducer	

Test Data				
	Test A	Test B	Test C	Test D
Target Diplacement (ft)	1.0	0.5	0.25	1.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.10	3.11	3.12	3.12
Pre-test XD #2	13.48	13.48	13.49	13.49
Expected Displacement (ft)	1.051	0.529	0.290	1.066
Observed Displacement (ft)	1.537	0.841	0.486	1.515
Slug Discrepancy (%)	46%	59%	68%	42%
Max Rebound above Static	0.602	0.341	0.210	0.602
Post-test XD #1	3.11	3.12	3.12	3.12
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST6a_380-440_sol	ROMP132_ST6b_380-440_sol	ROMP132_ST6c_380-440_sol	ROMP132_ST6d_380-440_sol
Specific Conductance (uS)	426	426	426	426
Temperature (C)	22.2	22.2	22.2	22.2
Lithology	Avon Park - interbedded	dolostone and mud - wad	ckestone w/ possible large	e fracture/cavity
K _h (ft/day)	65.05	60.15	69.01	66.76
Other	Used Butler (1998) solution,	and translation method dur	annulus transducer unplugged at start of test	
Comments	Test was repeated usir	ng solenoid ball valve (larger than inner diame	ter) as an experiment
	to see if slug discrepar	ncy/ test initiation was a	affected by valve size	
Notes: Slug Discrepancy <10%; Residua	al Deviation from $H_0 < 5\%$; a	nd Maximum Rebound < Sp	acer Placement above Static	;

Figure E-8. Field sheet for the slug test conducted between 587 and 440 feet below land surface (slug test 6) at the ROMP 132 well site in Marion County.

			ST NO.	7
eneral Information				
Wellsite: RO	MP 132 - Blitch Plantati	on	Date: 8/13/2008	
Well: Cor	e Hole	Performed by: A. Janosik		
Well Depth (ft bls)	555	Test Interval (ft - ft bls)	486-555	
Test Casing Height (ft als)	4.24	Date of Last Development	8/13/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	68.60	
Test Casing Type	NQ	Final Static WL (ft btoc)	68.65	
Test Interval Length (ft)	69	Slot Size & Filter Pack Type	none	
Annulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	64.46	

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	68.60	0.03	3.00 / 3.00
Transducer #2	15	0603300	annulus	78	0.04	13.54 / 13.66
Transducer #3	15	0603325	pressure		-0.04	
	Data Lo Spacer Le Spacer Comme	OD. 1.	r (CR800 - S 5-feet 625-inches	<u>5N 3</u> 573)	* · · · · · · · · · · · · · · · · · · ·	max possible rebound (or max displ. falling head test)
					₹	max possible displ. (rising hea test)

_	Test A	Test B	Test C	Test D
Target Diplacement (ft)	1.0	0.5	0.25	1.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.00	2.99	2.99	2.99
Pre-test XD #2	13.66	13.66	13.66	13.66
Expected Displacement (ft)	0.965	0.486	0.508	0.994
Observed Displacement (ft)	1.726	0.805	0.979	1.639
Slug Discrepancy (%)	79%	66%	93%	65%
Max Rebound above Static	0.370	0.218	0.218	0.384
Post-test XD #1	2.99	2.99	2.99	2.99
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST7a_485-555	ROMP132_ST7b_485-555	ROMP132_ST7c_485-555	ROMP132_ST7d_485-555
Specific Conductance (uS)	465	465	465	465
Temperature (C)	21.8	21.8	21.8	21.8
Lithology A	von Park - wackestor	ne to packstone with vu	uggy dolostone bed in b	ottom 7-ft
K _h (ft/day)	24.9	25.77	27.62	25.85
Other	really bad curve match	really bad curve match		
Comments F	FIRST TIME USING 3	' BALL VALVE FOR IN	IITIATION	
E	Bad Test- curve match	ing off - seem to be be	etween perm. units? - se	ee daily log 8/13/08

Figure E-9. Field sheet for the slug test conducted between 486 and 555 feet below land surface (slug test 7) at the ROMP 132 well site in Marion County.

ST NO. 7 cont.

Wellsite: RO	MP 132 - Blitch Plantation	l i i i i i i i i i i i i i i i i i i i	Date: 8/13/2008		
Well: Cor	e Hole	Perform	Performed by: A. Janosik		
Well Depth (ft bls)	555	Test Interval (ft - ft bls)	486-555		
Test Casing Height (ft als)	4.24	Date of Last Development	8/13/2008		
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	68.60		
Test Casing Type	NQ	Final Static WL (ft btoc)	68.65		
Test Interval Length (ft)	69	Slot Size & Filter Pack Type	none		
Annulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	64.46		

Set-up Infor	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	68.60	0.03	3.00 / 3.00
Transducer #2	15	0603300	annulus	78	0.04	13.54 / 13.66
Transducer #3	15	0603325	pressure		-0.04	
	Data Lo Spacer Le Spacer Comme	OD. 1.	r (CR800 - S 5-feet 625-inches	<u>SN 3</u> 573)	∗ ×	max possible rebound (or max displ. falling head test)
					↓	max possible displ. (rising hea

	Test E	Test F	Test G	Test H
Target Diplacement (ft)	1.0	1.0	0.5	0.25
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	2.99	2.99	2.99	2.99
Pre-test XD #2	13.66	13.66	13.66	13.66
Expected Displacement (ft)	0.986	0.972	0.486	0.276
Observed Displacement (ft)	1.539	0.965	0.493	0.305
Slug Discrepancy (%)	56%	1%	1%	11%
Max Rebound above Static	0.384	0.377	0.218	0.123
Post-test XD #1	2.99	2.99	2.99	2.99
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST7e_485-555	ROMP132_ST7f_485-555	ROMP132_ST7g_485-555	ROMP132_ST7h_485-55
Specific Conductance (uS)	465	465	465	465
Temperature (C)	21.8	21.8	21.8	21.8
Lithology A	Von Park - wackestor	ne to packstone with vu	iggy dolostone bed in b	ottom 7-ft
K _h (ft/day)	26.02	26.11	28.19	28.98
Other	really bad curve match	valve opend slowly (~ 2 sec)	valve opend slowly (~ 2 sec)	valve opend slowly (~ 2 se
Comments F	FIRST TIME USING 3	' BALL VALVE FOR IN	IITIATION	
Ē	Bad Test- curve match	ing off - seem to be be	etween perm. units? - se	e daily log 8/13/08

Figure E-10. Field sheet for the slug test conducted between 486 and 555 feet below land surface (slug test 7) at the ROMP 132 well site in Marion County.

SLUG TEST - DATA ACQUISITION SHEET

Wellsite: RO	MP 132 - Blitch Pla	Intation	Date: 8/13/2008	
Well: Cor	e Hole	Perform	ned by: A. Janosik	
Well Depth (ft bls)	555	Test Interval (ft - ft bls)	486-555	
Test Casing Height (ft als)	4.24	Date of Last Development	8/13/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	68.60	
Test Casing Type	NQ	Final Static WL (ft btoc)	68.65	
Test Interval Length (ft)	69	Slot Size & Filter Pack Type	none	
Annulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	64.46	

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	68.60	0.03	3.00 / 3.00
Transducer #2	15	0603300	annulus	78	0.04	13.54 / 13.66
Transducer #3	15	0603325	pressure		-0.04	
	Data Lo Spacer Le Spacer Comme	OD. 1.0	r (CR800 - S 5-feet 625-inches	<u>SN 3</u> 573) 	▲	max possible rebound (or max displ. falling head test)
Noto: Roading in Ai	r of the Trend		< 1/ 19/ of the	Full Scale of the Tra	↓	max possible displ. (rising head test)

	Test I	Test J	Test K	Test L
Target Diplacement (ft)	1.0			
Initiation method	pneumatic			
Rising/Falling head	rising			
Pre-test XD #1	2.99			
Pre-test XD #2	13.64			
Expected Displacement (ft)	0.994			
Observed Displacement (ft)	0.979			
Slug Discrepancy (%)	2%			
Max Rebound above Static	0.384			
Post-test XD #1	2.97			
Residual Dev. from H_o (%)	1%			
Data Logger File Name	ROMP132_ST7i_485-555			
Specific Conductance (uS)	465			
Temperature (C)	21.8			
Lithology A	von Park - wackestor	e to packstone with	vuggy dolostone bed in b	oottom 7-ft
K _h (ft/day)	25.52			
Other	valve opend slowly (~ 2 sec)			
Comments F	IRST TIME USING 3"	BALL VALVE FOR	INITIATION	
B	ad Test- curve match	ing off - seem to be	between perm. units? - s	ee daily log 8/13/

Figure E-11. Field sheet for the slug test conducted between 486 and 555 feet below land surface (slug test 7) at the ROMP 132 well site in Marion County.

						ST NO. 8
General Info	rmation					
	Wel	Isite: ROMP	132 - Blitch	Plantation		Date: 8/27/2008
	V	Well: Core H	ole		Perfe	ormed by: A. Janosik
W	/ell Depth (ft	t bls)	635		Test Interval (ft - ft bls)	587-630
Test Casi	ng Height (ft	(als)	4.08	Da	te of Last Development	8/27/2008
Test Casi	ing Diameter	r (in)	2 3/8		nitial Static WL (ft btoc)	67.28
Т	est Casing	Туре	NQ		Final Static WL (ft btoc)	67.22
Test In	terval Lengtl	h (ft)	43	Slot	Size & Filter Pack Type	none
Annulus Casing Height (ft als)		t als)	0.13	Initi	al Annulus WL (ft btoc)	62.98
Set-up Infor	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (
ransducer #1	15	?	test casing	67.28	0.02	3.00 / 3.09
ransducer #2	15	0603300	annulus	73	0.02	10.02 / 10.06
ransducer #3	15	0603325	pressure		-0.08	
	Data Lo	gger Splinte				
	Dulu LO	ggoi opinito		<u>5N 3573)</u>	א	
		ength		<u>SN 3</u> 573)	ידאן	max possible rebound (or max displ. falling head test)
	Spacer Le		5-feet	<u>5N 3</u> 573)	*	,
	Spacer Le	ength OD. <u>1.</u>	5-feet	<u></u>	↑	

Note: Reading in Air of the Transducer should be < +/-1% of the Full Scale of the Transducer

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	0.5	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.09	3.10	3.10	3.12
Pre-test XD #2	10.06	10.05	10.06	10.07
Expected Displacement (ft)	2.059	1.124	0.587	2.015
Observed Displacement (ft)	2.900	1.762	1.015	2.646
Slug Discrepancy (%)	41%	57%	73%	31%
Max Rebound above Static	1.044	0.667	0.391	1.029
Post-test XD #1	3.10	3.10	3.11	3.13
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST8a_587-630	ROMP132_ST8b_587-630	ROMP132_ST8c_587-630	ROMP132_ST8d_587-630
Specific Conductance (uS)	422	422	422	422
Temperature (C)	22.2	22.2	22.2	22.2
Lithology A	Avon Park - dolostone	with large vugs and so	me fractures	
K _h (ft/day)	70.51	71.59	75.37	71.11
Other				
Comments	The 3" ball valve was u	used in this test (and al	l tests after).	
(Opened valve slowly d	uring trials E & F, whicl	h improved slug discre	bancy values

Figure E-12. Field sheet for the slug test conducted between 587 and 630 feet below land surface (slug test 8) at the ROMP 132 well site in Marion County.

SLUG TEST - DATA ACQUISITION SHEET

			ST NO.	8 cont
eneral Information				
Wellsite: ROI	VP 132 - Blitch Planta	tion	Date: 8/27/2008	
Well: Cor	Well: Core Hole		Performed by: A. Janosik	
Well Depth (ft bls)	635	Test Interval (ft - ft bls)	587-630	
Test Casing Height (ft als)	4.08	Date of Last Development	8/27/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	67.28	
Test Casing Type	NQ	Final Static WL (ft btoc)	67.22	
Test Interval Length (ft)	43		none	
Annulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	62.98	

Set-up Infor	mation					
	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	67.28	0.02	3.00 / 3.09
Transducer #2	15	0603300	annulus	73	0.02	10.02 / 10.06
Transducer #3	15	0603325	pressure		-0.08	
	Data Lo Spacer Le Spacer Comme	OD. 1.0	r (CR800 - \$ 5-feet 625-inches	<u>SN 3</u> 573)	★Å ★	max possible rebound (or max displ. falling head test)
Note: Reading in Ai	r of the Transd	ucer should be	< +/-1% of the	Full Scale of the Tra		max possible displ. (rising head test)

	Test E	Test F	Test G	Test H
Target Diplacement (ft)	2.0	1.0	10010	100111
Initiation method	pneumatic	pneumatic		
Rising/Falling head	rising	rising		
Pre-test XD #1	3.13	3.14		
Pre-test XD #2	10.08	10.08		
Expected Displacement (ft)	2.001	1.051		
Observed Displacement (ft)	1.921	1.037		
Slug Discrepancy (%)	4%	1%		
Max Rebound above Static	1.022	0.652		
Post-test XD #1	3.13	3.15		
Residual Dev. from H_{o} (%)	0%	0%		
Data Logger File Name	ROMP132_ST8e_587-630	ROMP132_ST8f_587-630		
Specific Conductance (uS)	422	422		
Temperature (C)	22.2	22.2		
Lithology A	von Park - dolostone	with large vugs and sor	me fractures	
K _h (ft/day)	70.98	76.73		
Other				
Comments T	he 3" ball valve was u	used in this test (and all	tests after).	
(Dpened valve slowly d	uring trials E & F, which	n improved slug discrep	ancy values

Figure E-13. Field sheet for the slug test conducted between 587 and 630 feet below land surface (slug test 8) at the ROMP 132 well site in Marion County.

General Information Date: 9/9/2008 Wells: Core Hole Dete: 9/9/2008 Well: Core Hole Performed by: A. Janosik Test Casing Height (ft bis) 661-710 Test Casing Diameter (in) 2 3/8 Initial Static WL (ft btoc) 66.19 Test Casing Type NQ Final Static WL (ft btoc) 66.17 Test Interval Length (ft) 49 Slot Size & Filter Pack Type none Annulus Casing Height (ft als) 0.13 Initial Annulus WL (ft btoc) 62.07 Set-up Information Transducer #1 15 0603300 annulus 73 0.05 Transducer #2 15 0603325 pressure -0.05 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ST NO.</th> <th>9</th>							ST NO.	9
Well: Core Hole Performed by: A. Janosik Well Depth (ft bls) 710 Test Interval (ft - ft bls) 661-710 Test Casing Height (ft als) 4.18 Date of Last Development 9/9/2008 Test Casing Diameter (in) 2.3/8 Initial Static WL (ft btoc) 66.19 Test Casing Type NQ Final Static WL (ft btoc) 66.17 Test Interval Length (ft) 49 Slot Size & Filter Pack Type none Annulus Casing Height (ft als) 0.13 Initial Annulus WL (ft btoc) 62.07 Set-up Information Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05 max possible rebound (or r displ. falling head test) Spacer Length 5-feet -0.05 max possible rebound (or r displ. falling head test)	General Info	rmation						
Well Depth (ft bls) 710 Test Interval (ft - ft bls) 661-710 Test Casing Height (ft als) 4.18 Date of Last Development 9/9/2008 Test Casing Diameter (in) 2.3/8 Initial Static WL (ft btoc) 66.19 Test Casing Type NQ Final Static WL (ft btoc) 66.17 Test Interval Length (ft) 49 Slot Size & Filter Pack Type none Annulus Casing Height (ft als) 0.13 Initial Annulus WL (ft btoc) 62.07 Set-up Information Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05 max possible rebound (or r displ. falling head test) Spacer Length Stetet Spacer Length 5-feet Spacer Length 5-feet		Wel	lsite: ROMP	132 - Blitch	Plantation		Date: 9/9/2008	
Test Casing Height (ft als) 4.18 Date of Last Development 9/9/2008 Test Casing Diameter (in) 2 3/8 Initial Static WL (ft btoc) 66.19 Test Casing Type NQ Final Static WL (ft btoc) 66.17 Test Interval Length (ft) 49 Slot Size & Filter Pack Type none Annulus Casing Height (ft als) 0.13 Initial Annulus WL (ft btoc) 62.07 Set-up Information Type (psi) Serial No. Purpose & Depth (ft btoc) Reading in air (ft) Exp/Obsvd Submergence Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05		١	Nell: Core H	ole		Perf	ormed by: A. Janosik	
Test Casing Diameter (in) 2 3/8 Initial Static WL (ft btoc) 66.19 Test Casing Type NQ Final Static WL (ft btoc) 66.17 Test Interval Length (ft) 49 Slot Size & Filter Pack Type none Annulus Casing Height (ft als) 0.13 Initial Annulus WL (ft btoc) 62.07 Set-up Information Type (psi) Serial No. Purpose & Depth (ft btoc) Reading in air (ft) Exp/Obsvd Submergence Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05 max possible rebound (or r displ. falling head test) Spacer Up 1 625-inches 1 625-inches 1 625-inches 1 625-inches	W	/ell Depth (ft	t bls)	710		Test Interval (ft - ft bls)	661-710	
Test Casing Type NQ Final Static WL (ft btoc) 66.17 Test Interval Length (ft) 49 Slot Size & Filter Pack Type none Annulus Casing Height (ft als) 0.13 Initial Annulus WL (ft btoc) 62.07 Set-up Information Type (psi) Serial No. Purpose & Depth (ft btoc) Reading in air (ft) Exp/Obsvd Submergence Fransducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Fransducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Fransducer #3 15 0603325 pressure -0.05 max possible rebound (or r displ. falling head test) Data Logger Splinter (CR800 - SN 3573)	Test Casi	ng Height (ft	t als)	4.18	Da	te of Last Development	9/9/2008	
Test Interval Length (ft) 49 Slot Size & Filter Pack Type none Annulus Casing Height (ft als) 0.13 Initial Annulus WL (ft btoc) 62.07 Set-up Information Type (psi) Serial No. Purpose & Depth (ft btoc) Reading in air (ft) Exp/Obsvd Submergence Fransducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05	Test Casi	ing Diamete	r (in)	2 3/8	II	nitial Static WL (ft btoc)	66.19	
Annulus Casing Height (ft als) 0.13 Initial Annulus WL (ft btoc) 62.07 Set-up Information Type (psi) Serial No. Purpose & Depth (ft btoc) Reading in air (ft) Exp/Obsvd Submergence Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05	Т	est Casing	Гуре	NQ	F	Final Static WL (ft btoc)	66.17	
Set-up Information Type (psi) Serial No. Purpose & Depth (ft btoc) Reading in air (ft) Exp/Obsvd Submergence Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05	Test In	terval Lengt	h (ft)	49	Slot	Size & Filter Pack Type	none	
Set-up Information Type (psi) Serial No. Purpose & Depth (ft btoc) Reading in air (ft) Exp/Obsvd Submergence Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05	Annulus Casi	ng Height (ft	als)	0.13	Initi	al Annulus WL (ft btoc)	62.07	
Type (psi) Serial No. Purpose & Depth (ft btoc) Reading in air (ft) Exp/Obsvd Submergence Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05 -0.05 -0.05 Data Logger Splinter (CR800 - SN 3573) Spacer Length 5-feet								
Transducer #1 15 ? test casing 66.20 0.04 3.01 / 3.09 Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05	Set-up Infor	mation						
Transducer #2 15 0603300 annulus 73 0.05 10.93 / 10.90 Transducer #3 15 0603325 pressure -0.05 -0.05 Data Logger Splinter (CR800 - SN 3573) -max possible rebound (or r displ. falling head test) Spacer Op 1625-inches		Type (psi)	Serial No.	Purpose 8	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence	e (f
Transducer #3 15 0603325 pressure -0.05 Data Logger Splinter (CR800 - SN 3573) max possible rebound (or r displ. falling head test) Spacer Op 1 625-inches	Transducer #1	15	?	test casing	66.20	0.04	3.01 / 3.09	
Data Logger <u>Splinter (CR800 - SN 3</u> 573) Spacer Length <u>5-feet</u> <i>max possible rebound (or r</i> Spacer OD <u>1625-inches</u>	Fransducer #2	15	0603300	annulus	73	0.05	10.93 / 10.90	
Spacer Length 5-feet A displ. falling head test)	Transducer #3	15	0603325	pressure		-0.05		
Spacer Length <u>5-feet</u> displ. falling head test)		Data Lo	gger Splinte	r (CR800 - \$	SN 3573)	م		
Spacer OD. 1.625-inches		Spacer Le	ngth	5-feet		¥la		max
		Spacer	OD. 1.	625-inches		↓		

Spacer OD. <u>1.625-inches</u>	,		∇	- (- (- 14))
Comments:				static WL
↓	,			max possible displ. (rising head
	4	V -		test)

Note: Reading in Air of the Transducer should be < +/-1% of the Full Scale of the Transducer

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	2.0	2.0	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.09	3.09	3.09	3.10
Pre-test XD #2	10.90	10.90	10.90	10.90
Expected Displacement (ft)	1.922	1.980	2.052	2.030
Observed Displacement (ft)	2.444	2.545	3.350	2.008
Slug Discrepancy (%)	27%	29%	63%	1%
Max Rebound above Static	1.030	1.037	1.037	1.037
Post-test XD #1	3.09	3.09	3.10	3.10
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST9a_661-710	ROMP132_ST9b_661-710	ROMP132_ST9c_661-710	ROMP132_ST9d_661-7
Specific Conductance (uS)	433.0	433.0	433.0	433.0
Temperature (C)	22.5	22.5	22.5	22.5
Lithology	Avon Park - interbedde	ed pack-wackestone ar	nd dolostone; massive o	organic bed
K _h (ft/day)	65.51	64.12	66.54	63.23
Other	valve opened fast	valve opened fast	valve opened fast	valve opened slov
Comments	Head dependence dete	ermined from analyzing	g each peak of a trial	
I	Used Butler (1998) sol	ution, and translation n	nethod during analysis.	

Figure E-14. Field sheet for the slug test conducted between 661 and 710 feet below land surface (slug test 9) at the ROMP 132 well site in Marion County.

SLUG TEST - DATA ACQUISITION SHEET

			ST NO.	10
eneral Information				
Wellsite: ROI	MP 132 - Blitch Plantatio	n	Date: 9/15/2008	
Well: Cor	e Hole	Perform	ned by: A. Janosik	
Well Depth (ft bls)	810	Test Interval (ft - ft bls)	751-810	
Test Casing Height (ft als)	4.41	Date of Last Development	9/15/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	66.13	
Test Casing Type	NQ	Final Static WL (ft btoc)	66.10	
Test Interval Length (ft)	59	Slot Size & Filter Pack Type	none	
Annulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	61.78	

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	66.20	0.02	3.07 / 3.11
Transducer #2	15	0603300	annulus	73	0.00	11.22 / 11.21
Transducer #3	15	0603325	pressure		-0.05	
	Data Lo Spacer Le Spacer Comme	OD. 1.	r (CR800 - S 5-feet 625-inches	<u>SN 3</u> 573)	* *	max possible rebound (or max displ. falling head test) ∇ static WL
Note: Reading in Ai					↓	max possible displ. (rising head test)

Test Data				
	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	2.0	1.0	1.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.12	3.13	3.13	3.14
Pre-test XD #2	11.20	11.20	11.20	11.20
Expected Displacement (ft)	2.037	2.030	0.986	0.971
Observed Displacement (ft)	2.015	2.661	1.124	0.957
Slug Discrepancy (%)	1%	31%	14%	1%
Max Rebound above Static	none	none	none	none
Post-test XD #1	3.13	3.13	3.14	3.14
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST10a_751-810	ROMP132_ST10b_751-810	ROMP132_ST10c_751-810	ROMP132_ST10d_751-810
Specific Conductance (uS)	460.7	460.7	460.7	460.7
Temperature (C)	22.3	22.3	22.3	22.3
Lithology	Avon Park (Lake City)	- packstone to grainsto	one	
K _h (ft/day)	1.691	2.308	2.004	1.821
Other	valve opened slow	valve opened fast	valve opened fast (meant to be slow)	valve opened slow
Comments	Had to run different ma	ignitudes to prove hea		
	Used Butler (1998) sol	ution		
Notes: Slug Discrepancy <10%; Residua	l Deviation from H _o < 5%; ar	nd Maximum Rebound < Sp	acer Placement above Static	;

Figure E-15. Field sheet for the slug test conducted between 751 and 810 feet below land surface (slug test 10) at the ROMP 132 well site in Marion County.

ST NO. 10 cont. **General Information** Wellsite: ROMP 132 - Blitch Plantation Date: 9/15/2008 Well: Core Hole Performed by: A. Janosik Well Depth (ft bls) 751-810 810 Test Interval (ft - ft bls) 4.41 9/15/2008 Test Casing Height (ft als) Date of Last Development 2 3/8 66.13 Test Casing Diameter (in) Initial Static WL (ft btoc) NQ 66.10 **Test Casing Type** Final Static WL (ft btoc) Test Interval Length (ft) 59 Slot Size & Filter Pack Type none 0.13 61.78 Annulus Casing Height (ft als) Initial Annulus WL (ft btoc) Set-up Information Serial No. Reading in air (ft) Exp/Obsvd Submergence (ft) Type (psi) Purpose & Depth (ft btoc) Transducer #1 ? test casing 66.20 0.02 15 3.07 / 3.11 Transducer #2 annulus 0603300 0.00 11.22 / 11.21 15 73 0603325 Transducer #3 pressure 15 -0.05 Data Logger Splinter (CR800 - SN 3573) max possible rebound (or max Spacer Length 5-feet displ. falling head test) Spacer OD. 1.625-inches ⊠ _{static WL} Comments: max possible displ. (rising head test) Note: Reading in Air of the Transducer should be < +/-1% of the Full Scale of the Transducer

_	Test E	Test F	Test G	Test H
Target Diplacement (ft)	2.0			
Initiation method	pneumatic			
Rising/Falling head	rising			
Pre-test XD #1	3.15			
Pre-test XD #2	11.20			
Expected Displacement (ft)	2.008			
Observed Displacement (ft)	1.986			
Slug Discrepancy (%)	1%			
Max Rebound above Static	none			
Post-test XD #1	3.15			
Residual Dev. from H_o (%)	0%			
Data Logger File Name	ROMP132_ST10e_751-810			
Specific Conductance (uS)	460.7			
Temperature (C)	22.3			
Lithology	Avon Park (Lake City)	- packstone to grainst	one	
K _h (ft/day)	1.720			
Other	valve opened slow			
Comments I	Had to run different ma	gnitudes to prove hea	ad dependence	
<u>-</u>	Jsed Butler (1998) solu	ution		

Figure E-16. Field sheet for the slug test conducted between 751 and 810 feet below land surface (slug test 10) at the ROMP 132 well site in Marion County.

			ST NO.	11
neral Information				
Wellsite: ROI	VP 132 - Blitch Plar	ntation	Date: 9/22/2008	
Well: Cor	e Hole	Perform	ned by: A. Janosik	
Well Depth (ft bls)	890	Test Interval (ft - ft bls)	845-890	
Test Casing Height (ft als)	5.42	Date of Last Development	9/22/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	67.01	
Test Casing Type	NQ	Final Static WL (ft btoc)	66.96	
Test Interval Length (ft)	45	Slot Size & Filter Pack Type	none	
nnulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	61.64	

Set-up Infor	Type (psi)	Serial No.	Purpose 8	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	67	0.05	3.01 / 3.09
Transducer #2	15	0603300	annulus	73	0.05	11.36 / 11.37
Transducer #3	15	0603325	pressure		-0.03	
	Data Log Spacer Le Spacer Comme	OD. 1.0	r (CR800 - \$ 5-feet 625-inches	<u>SN 3</u> 573)	*È *	max possible rebound (or max displ. falling head test) ✓ static WL
Note [,] Reading in A	r of the Transd	ucer should be	< +/-1% of the	Full Scale of the Tra		max possible displ. (rising head test)

Test Data				
	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	2.0	1.0	1.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.09	3.08	3.12	3.13
Pre-test XD #2	11.36	11.36	11.39	11.40
Expected Displacement (ft)	1.972	1.914	0.957	0.928
Observed Displacement (ft)	1.980	1.922	1.726	1.661
Slug Discrepancy (%)	0%	0%	80%	79%
Max Rebound above Static	1.196	1.175	0.638	0.645
Post-test XD #1	3.08	3.11	3.13	3.13
Residual Dev. from H_o (%)	0%	1%	0%	0%
Data Logger File Name	ROMP132_ST11a_845-890	ROMP132_ST11b_845-890	ROMP132_ST11c_845-890	ROMP132_ST11d_845-890
Specific Conductance (uS)	430.5	430.5	430.5	430.5
Temperature (C)	22.0	22.0	22.0	22.0
Lithology	Avon Park (Lake City)	 vuggy pack-grainstor 	e with possible void	
K _h (ft/day)	110.7	110.8	120.2	129.1
Other	valve opened slow	valve opened slow	valve opened fast	valve opened fast
Comments	Trials A & B used 3" ba	all valve, trials C & D us	sed Dale's 3" flap valve	which leaked slowly
-	during trial D. Used Bu	tler (1998) solution, an	d translation method du	uring analysis.
Notes: Slug Discrepancy <10%; Residua	al Deviation from $H_0 < 5\%$; and	nd Maximum Rebound < Sp	acer Placement above Static	;

Figure E-17. Field sheet for the slug test conducted between 845 and 890 feet below land surface (slug test 11) at the ROMP 132 well site in Marion County.

ST NO.

12

SLUG TEST - DATA ACQUISITION SHEET

							12
General Info	rmation						
	Wel	lsite: ROMP	132 - Blitch	Plantation		Date: 9/30/2008	
	١	Nell: Core H	ole		Perfe	ormed by: A. Janosik	
W	/ell Depth (ft	t bls)	975		Test Interval (ft - ft bls)	906-975	
Test Casi	ng Height (ft	t als)	4.54	Da	te of Last Development	9/29/2008	
Test Casi	ng Diamete	r (in)	2 3/8	I	nitial Static WL (ft btoc)	65.96	
Т	est Casing	Гуре	NQ		Final Static WL (ft btoc)	65.99	
Test In	terval Lengt	h (ft)	69	Slot	Size & Filter Pack Type	none	
Annulus Casii	ng Height (fi	t als)	0.13	Initi	al Annulus WL (ft btoc)	61.44	
Set-up Infor	mation						
	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence	e (ft)
ransducer #1	15	?	test casing	65.95	0.06	2.99 / 3.06	
ransducer #2	15	0603300	annulus	73	0.07	11.56 / 11.48	
Fransducer #3	15	0603325	pressure		-0.01		

Transducer #2	15	0603300	annulus	73	0.07	11.56 / 11.48
Transducer #3	15	0603325	pressure		-0.01	
	Data Lo	gger Splinte	r (CR800 - S	<u>SN 3</u> 573)	م	max possible rebound (or max
	Spacer Le	ngth	5-feet		רך"ן	displ. falling head test)
	Spacer	OD. <u>1.</u>	625-inches		↓	∇
	Comme	ents:			↑	──── static WL
						max possible displ. (rising head test)
	(d) T d		. / 40/ (1) .	E II O I I I I I I I I I	• • • • • • •	1001/

Note: Reading in Air of the Transducer should be < +/-1% of the Full Scale of the Transducer

_	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	0.5	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.05	3.04	3.04	3.04
Pre-test XD #2	11.48	11.46	11.46	11.46
Expected Displacement (ft)	2.023	0.972	0.457	1.784
Observed Displacement (ft)	3.068	0.986	0.486	2.480
Slug Discrepancy (%)	52%	1%	6%	39%
Max Rebound above Static	none	none	none	none
Post-test XD #1	3.04	3.04	3.04	3.04
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST12a_906-975	ROMP132_ST12b_906-975	ROMP132_ST12c_906-975	ROMP132_ST12d_906-9
Specific Conductance (uS)	438.4	438.4	438.4	438.4
Temperature (C)	22.1	22.1	22.1	22.1
Lithology	Oldsmar - interbedded	packstone to grainstor	ne and dolostone	
K _h (ft/day)	2.747	3.159	3.624	2.876
Other	valve opened fast	valve opened fast	valve opened slow	valve opend fas
Comments	Used Butler (1998) sol	ution, and translation n	nethod during analysis.	

Notes: Slug Discrepancy <10%; Residual Deviation from H_o < 5%; and Maximum Rebound < Spacer Placement above Static

Figure E-18. Field sheet for the slug test conducted between 906 and 975 feet below land surface (slug test 12) at the ROMP 132 well site in Marion County.

SLUG TEST - DATA ACQUISITION SHEET

		ST NO.	13
P 132 - Blitch Plantation		Date: 10/2/2008	
Hole	Perform	ned by: A. Janosik	
1,045	Test Interval (ft - ft bls)	981-1,045	
4.29	Date of Last Development	10/2/2008	
2 3/8	Initial Static WL (ft btoc)	65.75	
NQ	Final Static WL (ft btoc)	65.75	
64	Slot Size & Filter Pack Type	none	
0.13	Initial Annulus WL (ft btoc)	61.47	
	Hole 1,045 4.29 2 3/8 NQ 64	1,045Test Interval (ft - ft bls)4.29Date of Last Development2 3/8Initial Static WL (ft btoc)NQFinal Static WL (ft btoc)64Slot Size & Filter Pack Type	HolePerformed by: A. Janosik1,045Test Interval (ft - ft bls)981-1,0454.29Date of Last Development10/2/20082 3/8Initial Static WL (ft btoc)65.75NQFinal Static WL (ft btoc)65.7564Slot Size & Filter Pack Typenone

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	65.75	0.07	3.00 / 3.08
Transducer #2	15	0603300	annulus	73	0.08	11.50 / 11.50
Transducer #3	15	0603325	pressure		0.02	
	Data Lo Spacer Le Spacer Comme	ngth OD1.	r (CR800 - S 5-feet 625-inches	<u>SN 3</u> 573) 	* <u></u> +	max possible rebound (or max displ. falling head test) Static WL
					¥	max possible displ. (rising head test)

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	1.0	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.08	3.08	3.08	3.08
Pre-test XD #2	11.50	11.50	11.50	11.50
Expected Displacement (ft)	1.988	1.001	1.001	2.009
Observed Displacement (ft)	3.373	0.987	1.037	3.489
Slug Discrepancy (%)	70%	1%	4%	74%
Max Rebound above Static	1.168	0.675	0.675	1.175
Post-test XD #1	3.08	3.08	3.08	3.08
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST13a_981-1045	ROMP132_ST13b_981-1045	ROMP132_ST13c_981-1045	ROMP132_ST13d_981-10
Specific Conductance (uS)	446.0	446.0	446.0	446.0
Temperature (C)	22.0	22.0	22.0	22.0
Lithology	Oldsmar - dolostone a	nd pack-grainstone w/	possible void	
K _h (ft/day)	56.53	63.06	63.21	58.73
Other	valve opened fast	valve opened slow	valve opened slow	valve opened fas
Comments	Used Butler (1998) sol	ution and translation m	ethod during analysis.	

Figure E-19. Field sheet for the slug test conducted between 981 and 1,045 feet below land surface (slug test 13) at the ROMP 132 well site in Marion County.

eneral Information	MP 132 - Blitch Plantation		Date: 10/13/2008
Well: Cor			med by: A. Janosik, T. Ga
Well Depth (ft bls)	1,155	Test Interval (ft - ft bls)	1,076-1,155
Test Casing Height (ft als)	4.20	Date of Last Development	10/13/2008
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	65.72
Test Casing Type	NQ	Final Static WL (ft btoc)	65.72
Test Interval Length (ft)	79	Slot Size & Filter Pack Type	none
Annulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	61.37

ST NO.

14

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	67.70	0.04	2.98 / 3.05
Transducer #2	15	0603300	annulus	73	0.02	11.63 / 11.64
Transducer #3	15	0603325	pressure		-0.04	
	Data Lo Spacer Le Spacer Comme	OD. 1.	r (CR800 - S 5-feet 625-inches	<u>SN 3</u> 573) 	▲	max possible rebound (or max displ. falling head test) ∇ static WL
					↓	max possible displ. (rising head test)

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	1.0	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.05	3.06	3.07	3.08
Pre-test XD #2	11.64	11.64	11.65	11.64
Expected Displacement (ft)	1.986	1.000	1.015	2.037
Observed Displacement (ft)	2.603	1.066	1.044	3.052
Slug Discrepancy (%)	31%	7%	3%	50%
Max Rebound above Static	1.225	0.703	0.710	1.232
Post-test XD #1	3.06	3.08	3.08	3.08
Residual Dev. from H_o (%)	0%	1%	0%	0%
Data Logger File Name	ROMP132_ST14a_1076-1155	ROMP132_ST14b_1076-1155	ROMP132_ST14c_1076-1155	ROMP132_ST14d_1076-1155
Specific Conductance (uS)	452.9	452.9	452.9	452.9
Temperature (C)	22.3	22.3	22.3	22.3
Lithology	Oldsmar - interbedded	pack-wackestone and	dolostone; abundant w	eathered quartz
K _h (ft/day)	61.23	78.44	71.55	74.33
Other	valve opened fast	valve opened slow	valve opened slow	valve opened fast
Comments	Used Butler (1998) sol	ution, and translation n	nethod during analysis.	
-			· ·	

Figure E-20. Field sheet for the slug test conducted between 1,076 and 1,155 feet below land surface (slug test 14) at the ROMP 132 well site in Marion County.

		ST NO.	15
P 132 - Blitch Plantation)	Date: 10/22/2008	
Hole	Perfor	med by: A. Janosik, J.	LaRoch
1,230	Test Interval (ft - ft bls)	1,186-1,230	
4.36	Date of Last Development	10/22/2008	
2 3/8	Initial Static WL (ft btoc)	66.02	
NQ	Final Static WL (ft btoc)	66.00	
44	Slot Size & Filter Pack Type	none	
0.13	Initial Annulus WL (ft btoc)	61.41	
	Hole 1,230 4.36 2 3/8 NQ 44	1,230Test Interval (ft - ft bls)4.36Date of Last Development2 3/8Initial Static WL (ft btoc)NQFinal Static WL (ft btoc)44Slot Size & Filter Pack Type	HolePerformed by: A. Janosik, J.1,230Test Interval (ft - ft bls)1,186-1,2304.36Date of Last Development10/22/20082 3/8Initial Static WL (ft btoc)66.02NQFinal Static WL (ft btoc)66.0044Slot Size & Filter Pack Typenone

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	66	0.07	2.98 / 3.06
Transducer #2	15	0603300	annulus	73	0.07	11.59 / 11.59
Transducer #3	15	0603325	pressure		0.00	
	Data Lo Spacer Le Spacer Comme	OD. 1.	r (CR800 - S 5-feet 625-inches	<u>SN 3</u> 573)	∗k †	max possible rebound (or max displ. falling head test) ∇ static WL
Note: Reading in Ai					↓	max possible displ. (rising head test)

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	1.0	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.05	3.05	3.05	3.08
Pre-test XD #2	11.59	11.59	11.59	11.60
Expected Displacement (ft)	1.973	0.957	0.979	1.944
Observed Displacement (ft)	3.134	1.001	0.994	2.473
Slug Discrepancy (%)	59%	5%	2%	27%
Max Rebound above Static	1.170	0.650	0.630	1.150
Post-test XD #1	3.05	3.05	3.07	3.08
Residual Dev. from H_o (%)	0%	0%	1%	0%
Data Logger File Name	ROMP132_ST15a_1186-1230	ROMP132_ST15b_1186-1230	ROMP132_ST15c_1186-1230	ROMP132_ST15d_1186-12
Specific Conductance (uS)	460.2	460.2	460.2	460.2
Temperature (C)	22.1	22.1	22.1	22.1
Lithology	Oldsmar - fractured do	lostone		
K _h (ft/day)	79.98	89.6	84.79	72.5
Other	valve opened fast	valve opened slow	valve opened slow	valve opened fas
Comments	Used Butler (1998) sol	ution, and translation n	nethod during analysis.	

Figure E-21. Field sheet for the slug test conducted between 1,186 and 1,230 feet below land surface (slug test 15) at the ROMP 132 well site in Marion County.

			ST NO.	16
eneral Information				
Wellsite: RO	MP 132 - Blitch Plantation		Date: 11/19/2008	
Well: Cor	e Hole	Perforr	med by: A. Janosik	
Well Depth (ft bls)	1,310	Test Interval (ft - ft bls)	1,246-1,310	
Test Casing Height (ft als)	4.30	Date of Last Development	11/19/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	66.50	
Test Casing Type	NQ	Final Static WL (ft btoc)	66.50	
Test Interval Length (ft)	64	Slot Size & Filter Pack Type	none	
Annulus Casing Height (ft als)	0.13	Initial Annulus WL (ft btoc)	61.80	

•	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	66.50	0.07	3.00 / 3.09
Transducer #2	15	0603300	annulus	73	0.11	11.20 / 11.19
Transducer #3	15	0603325	pressure		0.03	
	Spacer Le Spacer	OD. <u>1.0</u> ents: <u>Outside</u>	5-feet 625-inches e air temp = 4	2°F	∗ ≹	max possible rebound (or max displ. falling head test) ∇ static WL
	(4) -	high re	ading in air	n for Full Scale of the Tra	. ↓	max possible displ. (rising head test)

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	1.0	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.10	3.09	3.08	3.09
Pre-test XD #2	11.20	11.20	11.20	11.21
Expected Displacement (ft)	1.981	0.936	0.907	1.952
Observed Displacement (ft)	2.700	0.958	0.965	2.801
Slug Discrepancy (%)	36%	2%	6%	43%
Max Rebound above Static	1.306	0.697	0.682	1.277
Post-test XD #1	3.09	3.08	3.09	3.10
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST16a_1246-1310	ROMP132_ST16b_1246-1310	ROMP132_ST16c_1246-1310	ROMP132_ST16d_1246-1310
Specific Conductance (uS)	462.1	462.1	462.1	462.1
Temperature (C)	21.8	21.8	21.8	21.8
Lithology	Oldsmar - highly fractu	red dolostone (boulder	zone)	
K _h (ft/day)	101.2	168.3	164.8	118
Other	valve opened fast	valve opened slow	valve opened slow	valve opened fast
Comments	There was a small response	in annulus during trial A, pa	ocker was reset but response	still observed.
	Perhaps connection through	fracture. Used Butler (1998) solution, and translation me	ethod during analysis.
otes: Slug Discrepancy <10%; Residua	al Deviation from $H_0 < 5\%$; and	nd Maximum Rebound < Sp	acer Placement above Static	;

Figure E-22. Field sheet for the slug test conducted between 1,246 and 1,310 feet below land surface (slug test 16) at the ROMP 132 well site in Marion County.

SLUG TEST - DATA ACQUISITION SHEET

			ST NO.	17
eneral Information				
Wellsite: RO	MP 132 - Blitch Plantation	1	Date: 12/16/2008	
Well: Cor	e Hole	Perforr	med by: A. Janosik	
Well Depth (ft bls)	1,390	Test Interval (ft - ft bls)	1,346-1,390	
Test Casing Height (ft als)	3.73	Date of Last Development	12/16/2008	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	66.97	
Test Casing Type	NQ	Final Static WL (ft btoc)	67.06	
Test Interval Length (ft)	44	Slot Size & Filter Pack Type	none	
Annulus Casing Height (ft als)	0.62	Initial Annulus WL (ft btoc)	62.68	

Set-up Information							
	Type (psi)	Serial No.	Purpose 8	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)	
Transducer #1	15	?	test casing	67	0.04	3.03 / 3.06	
Transducer #2	15	0603300	annulus	73	0.04	10.32 / 10.32	
Transducer #3	15	0603325	pressure		0.00		
Note: Reading in Ai	Spacer Le Spacer Comme	OD. <u>1.</u> ents: <u>New n</u> for wat above	5-feet 625-inches neasuring po er levels is (old MP.	oint	ansducer	max possible rebound (or max displ. falling head test) static WL max possible displ. (rising head test)	

	Test A	Test B	Test C	Test D		
Target Diplacement (ft)	2.0	1.0	1.0	2.0		
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic		
Rising/Falling head	rising	rising	rising	rising		
Pre-test XD #1	3.06	3.04	3.03	3.02		
Pre-test XD #2	10.32	10.32	10.32	10.32		
Expected Displacement (ft)	1.994	0.986	0.993	1.878		
Observed Displacement (ft)	2.560	1.044	1.022	2.552		
Slug Discrepancy (%)	28%	6%	3%	36%		
Max Rebound above Static	1.284	0.711	0.703	1.276		
Post-test XD #1	3.04	3.03	3.02	3.01		
Residual Dev. from H_{o} (%)	1%	0%	0%	0%		
Data Logger File Name	ROMP132_ST17a_1346-1390	ROMP132_ST17b_1346-1390	ROMP132_ST17c_1346-1390	ROMP132_ST17d_1346-1390		
Specific Conductance (uS)	474.6	474.6	474.6	474.6		
Temperature (C)	22.5	22.5	22.5	22.5		
Lithology Oldsmar - interbedded limestone and dolostone, possible void						
K _h (ft/day)	116.8	164	144.9	115.4		
Other	valve opened fast	valve opened slow	valve opened slow	valve opened fast		
Comments	Used Butler (1998) sol	ution, and translation n	nethod during analysis.			
-			x <i>i</i>			

Figure E-23. Field sheet for the slug test conducted between 1,346 and 1,390 feet below land surface (slug test 17) at the ROMP 132 well site in Marion County.

						ST NO.	18
General Info	ormation						
	Wel	lsite: ROMP	132 - Blitch	Plantation		Date: 1/29/2009	
	١	Vell: Core H	lole		Perfe	ormed by: A. Janosik	
Well Depth (ft bls) 1,460					Test Interval (ft - ft bls)	1,421-1,460	
Test Casi	ng Height (ft	als)	3.82	Dat	te of Last Development	1/28/2009	
Test Casi	ing Diameter	r (in)	2 3/8	h	nitial Static WL (ft btoc)	67.99	
Т	est Casing	Гуре	NQ	F	Final Static WL (ft btoc)	NM	
Test In	terval Lengt	h (ft)	39	Slot	Size & Filter Pack Type	none	
Annulus Casi	ng Height (ft	als)	0.62	Initi	ial Annulus WL (ft btoc)	63.50	
Set-up Infor		Sorial No.			Deading in sir (4)		
•	Type (psi)	Serial No.		Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submerger	nce (ft)
ransducer #1	Type (psi) 15	?	test casing	68	0.04	2.99/3.13	nce (ft)
Fransducer #1 Fransducer #2	Type (psi) 15 15	? 0603300	test casing annulus		0.04		nce (ft)
Fransducer #1 Fransducer #2	Type (psi) 15 15 15	? 0603300 0603325	test casing annulus pressure	68 73	0.04	2.99/3.13	nce (ft)
Fransducer #1 Fransducer #2	Type (psi) 15 15 15 Data Lo	? 0603300 0603325 gger <u>Splinte</u>	test casing annulus pressure r (CR800 - S	68 73	0.04	2.99 / 3.13 9.50 / 9.43 max possible rebound (
Fransducer #1 Fransducer #2	Type (psi) 15 15 15 Data Lo Spacer Le	? 0603300 0603325 gger <u>Splinte</u> ngth	test casing annulus pressure r (CR800 - S 5-feet	68 73	0.04	2.99/3.13 9.50/9.43	
Fransducer #1 Fransducer #2	Type (psi) 15 15 15 Data Lo	? 0603300 0603325 gger <u>Splinte</u> ngth	test casing annulus pressure r (CR800 - S	68 73	0.04	2.99 / 3.13 9.50 / 9.43 max possible rebound (displ. falling head test)	
Fransducer #1 Fransducer #2	Type (psi) 15 15 Data Lo Spacer Le Spacer	? 0603300 0603325 gger <u>Splinte</u> ngth	test casing annulus pressure r (CR800 - S 5-feet 625-inches	68 73 SN 3573)	0.04	2.99 / 3.13 9.50 / 9.43 max possible rebound (
Transducer #1 Transducer #2	Type (psi) 15 15 Data Lo Spacer Le Spacer	? 0603300 0603325 gger <u>Splinte</u> ngth OD. <u>1</u> . ents: <u>raining</u>	test casing annulus pressure r (CR800 - S 5-feet 625-inches	68 73 SN 3573) er	0.04	2.99 / 3.13 9.50 / 9.43 max possible rebound (displ. falling head test)	or max
Set-up Inform Transducer #1 Transducer #2 Transducer #3	Type (psi) 15 15 Data Lo Spacer Le Spacer	? 0603300 0603325 gger <u>Splinte</u> ngth OD. <u>1.</u> ents: <u>raining</u> <u>slipped</u>	test casing annulus pressure r (CR800 - S 5-feet 625-inches out, transduct	68 73 SN 3573) er	0.04	2.99 / 3.13 9.50 / 9.43 max possible rebound (displ. falling head test)	or max

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	1.0	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.13	3.12	3.12	3.12
Pre-test XD #2	9.43	9.43	9.43	9.43
Expected Displacement (ft)	2.016	0.979	1.015	2.016
Observed Displacement (ft)	3.452	0.986	1.030	3.452
Slug Discrepancy (%)	71%	1%	1%	71%
Max Rebound above Static	1.320	0.711	0.733	1.313
Post-test XD #1	3.12	3.12	3.12	3.10
Residual Dev. from H_o (%)	0%	0%	0%	1%
Data Logger File Name	ROMP132_ST18a_1421-1460	ROMP132_ST18b_1421-1460	ROMP132_ST18c_1421-1460	ROMP132_ST18d_1421-14
Specific Conductance (uS)	521.0	521.0	521.0	521.0
Temperature (C)	22.5	22.5	22.5	22.5
Lithology	Oldsmar - Highly fractu	ured crystaline dolostor	ne	
K _h (ft/day)	228.1	220.2	210.3	223.8
Other	valve opened fast	valve opened slow	valve opened slow	valve opened fas
Comments	Used Butler (1998) sol	ution, and translation n	nethod during analysis.	

Notes: Slug Discrepancy <10%; Residual Deviation from H_o < 5%; and Maximum Rebound < Spacer Placement above Static

Figure E-24. Field sheet for the slug test conducted between 1,421 and 1,460 feet below land surface (slug test 18) at the ROMP 132 well site in Marion County.

Appendix E 99

SLUG TEST - DATA ACQUISITION SHEET

			ST NO.	19
eneral Information				
Wellsite: RO	MP 132 - Blitch Plantation		Date: 2/12/2009	
Well: Cor	e Hole	Perforr	ned by: A. Janosik	
Well Depth (ft bls)	1,500	Test Interval (ft - ft bls)	1,466-1,500	
Test Casing Height (ft als)	3.42	Date of Last Development	2/12/2009	
Test Casing Diameter (in)	2 3/8	Initial Static WL (ft btoc)	67.78	
Test Casing Type	NQ	Final Static WL (ft btoc)	NM	
Test Interval Length (ft)	34	Slot Size & Filter Pack Type	none	
Annulus Casing Height (ft als)	0.62	Initial Annulus WL (ft btoc)	63.76	

	Type (psi)	Serial No.	Purpose &	Depth (ft btoc)	Reading in air (ft)	Exp/Obsvd Submergence (ft)
Transducer #1	15	?	test casing	67.75	0.05	2.97 / 2.98
Transducer #2	15	0603300	annulus	73	0.10	9.24 / 9.24
Transducer #3	15	0603325	pressure		-0.01	
	Spacer Le Spacer	ngth OD. <u>1.</u> ents: <u>annulu</u>	r (CR800 - S 5-feet 625-inches s transducer needs repair		▲ · · · · · · · · · · · · · · · · · · ·	max possible rebound (or max displ. falling head test)

	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	1.0	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	2.98	2.96	2.95	2.94
Pre-test XD #2	9.24	9.24	9.24	9.25
Expected Displacement (ft)	1.987	1.030	1.008	1.994
Observed Displacement (ft)	2.748	1.044	1.044	2.865
Slug Discrepancy (%)	38%	1%	4%	44%
Max Rebound above Static	1.349	0.776	0.747	1.342
Post-test XD #1	2.96	2.95	2.94	2.95
Residual Dev. from H_o (%)	1%	0%	0%	0%
Data Logger File Name	ROMP132_ST19a_1466-1500	ROMP132_ST19b_1466-1500	ROMP132_ST19c_1466-1500	ROMP132_ST19d_1466-150
Specific Conductance (uS)	525.0	525.0	525.0	525.0
Temperature (C)	22.7	22.7	22.7	22.7
Lithology C	Oldsmar - Fractured, d	lense, euhedral dolosto	one	
K _h (ft/day)	330.3	650	783.9	315
Other	valve opened fast	valve opened slow	valve opened slow	valve opened fast
 Comments L	Jsed Butler (1998) sol	ution, and translation n	nethod during analysis.	

Figure E-25. Field sheet for the slug test conducted between 1,466 and 1,500 feet below land surface (slug test 19) at the ROMP 132 well site in Marion County.

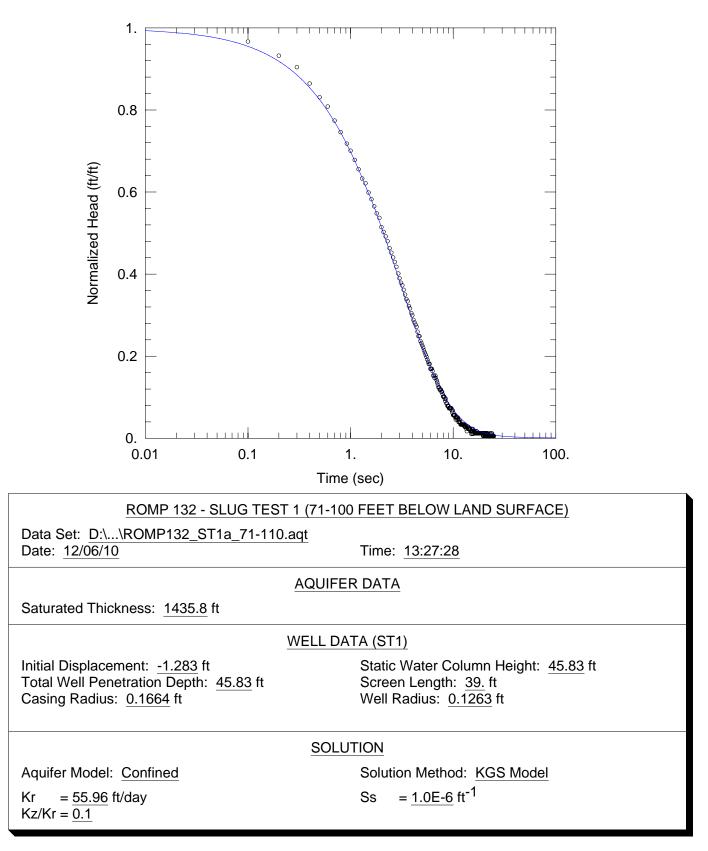
SLUG TEST - DATA ACQUISITION SHEET

3100 1131							ST NO.	20
General Info	rmation							
	Wel	lsite: ROMP	132 - Blitch	Plantation		Date:	7/22/2010	
	١	Nell: Core H	ole		Pei	formed by:	A. Janosik	
W	ell Depth (f	t bls)	1,607		Test Interval (ft - ft ble	s) 1,55 ⁻	7-1,607	
Test Casi	ng Height (fl	als)	7.03	Da	te of Last Developmer	nt 7/22	2/2010	
Test Casi	ng Diamete	r (in)	2 3/8	I	nitial Static WL (ft btoo	c) 7	0.99	
Т	est Casing	Гуре	NRQ		Final Static WL (ft btoo	c) 7	1.07	
Test In	terval Lengt	h (ft)	50	Slot	Size & Filter Pack Typ	e n	ione	
Annulus Casi	ng Height (fi	t als)	1.96	Initi	al Annulus WL (ft btoo	;) 6	5.39	
Set-up Infor	mation					-		
Set-up infor	Type (psi)	Serial No.	D		Reading in air (ft)		svd Submergence	o /ft
Fransducer #1			test casing	Depth (ft btoc)	• • • •	L.NP/ OD.		<u> </u>
Fransducer #2	15		annulus	71	-0.04		3.01/3.11	
Fransducer #2	15		pressure	75	0.07		9.61/9.66	_
	15 Data L a	www.Dofaol	•	N 2020)	-0.06			
		gger <u>Rafael</u>		<u>N 29</u> 26)	- <u></u>	max j	possible rebound (or	max
	•	ngth			↑	aispi.	falling head test)	
	•	OD. <u>1.</u>			X	static	WL	
	Comme	ents:						
					↓ -	max	possible displ. (rising	ı hea
lata. Daadiaa in Ai			/ 40/ 6 th .		·····	test)		
NOLE. Reading In Al	I UI THE I FANSO	ucer should be	< +/-1% of the	Full Scale of the Tra	ansuucer			
Fest Data								
			Test A	Tes	t B Tes	st C	Test D	
Target	Diplacemer	nt (ft)	2.0	1.(0 0	5	2.0	

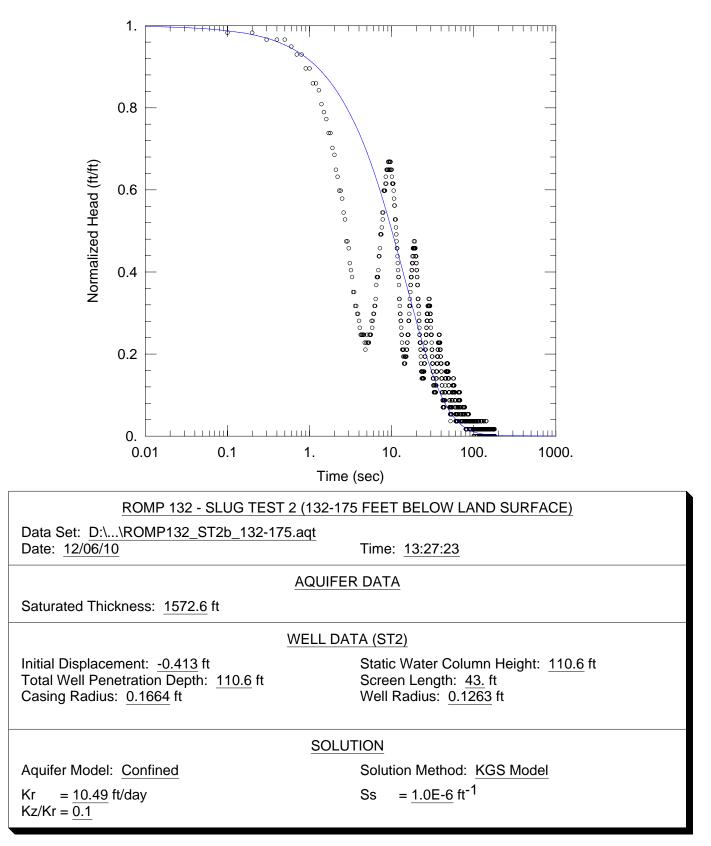
	Test A	Test B	Test C	Test D
Target Diplacement (ft)	2.0	1.0	0.5	2.0
Initiation method	pneumatic	pneumatic	pneumatic	pneumatic
Rising/Falling head	rising	rising	rising	rising
Pre-test XD #1	3.10	3.09	3.08	3.08
Pre-test XD #2	9.66	9.66	9.65	9.66
Expected Displacement (ft)	1.934	1.663	0.557	2.044
Observed Displacement (ft)	2.785	1.136	0.894	2.821
Slug Discrepancy (%)	44%	32%	61%	38%
Max Rebound above Static	0.059	0.051	0.022	0.059
Post-test XD #1	3.09	3.08	3.08	3.08
Residual Dev. from H_o (%)	0%	0%	0%	0%
Data Logger File Name	ROMP132_ST20a_1557-1607	ROMP132_ST20b_1557-1607	ROMP132_ST20a_1557-1607	ROMP132_ST20a_1557-1607
Specific Conductance (uS)	1122.0	1122.0	1122.0	1122.0
Temperature (C)	24.3	24.3	24.3	24.3
Lithology	Cedar Keys - Doloston	e (former packstone)		
K _h (ft/day)	5.878	6.666	6.695	5.939
Other				
Comments	Used Butler (1998) sol	ution, and translation n	nethod during analysis.	
Notes: Slug Discrepancy <10%; Residu	al Deviation from H _o < 5%; a	nd Maximum Rebound < Sp	acer Placement above Static	

Figure E-26. Field sheet for the slug test conducted between 1,557 and 1,607 feet below land surface (slug test 20) at the ROMP 132 well site in Marion County.

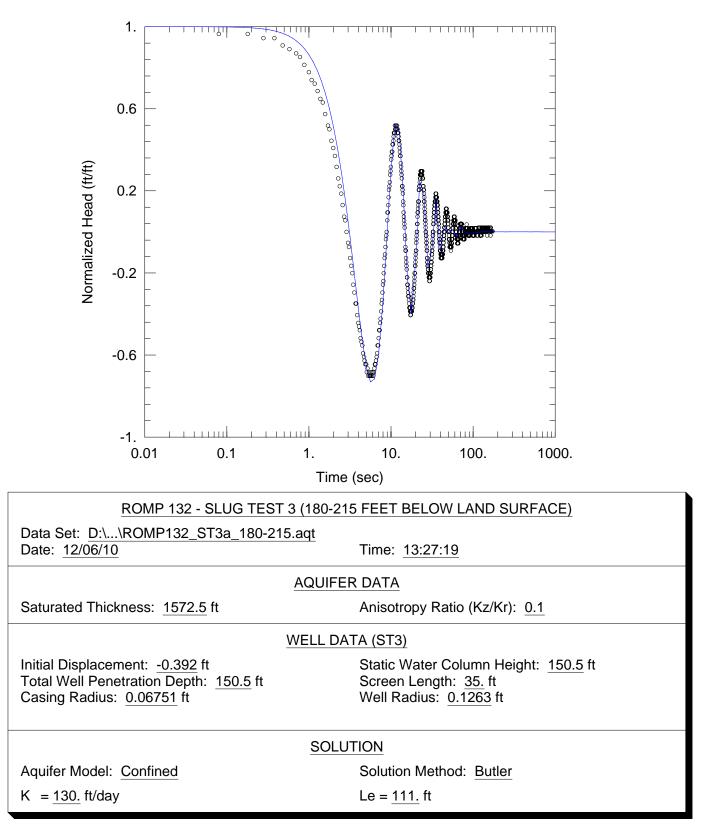
Appendix E 101

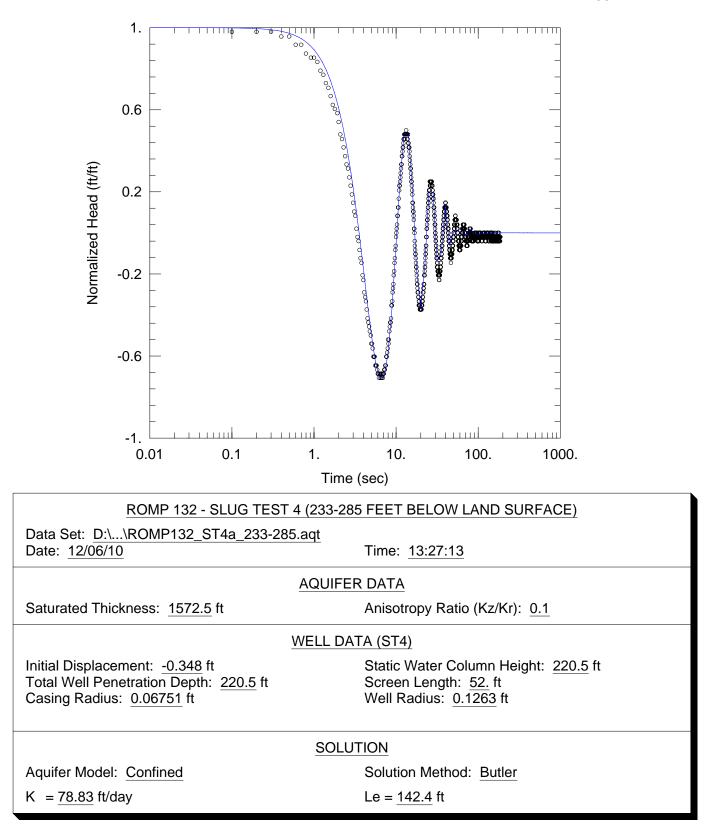

SLUG TEST - DATA ACQUISITION SHEET

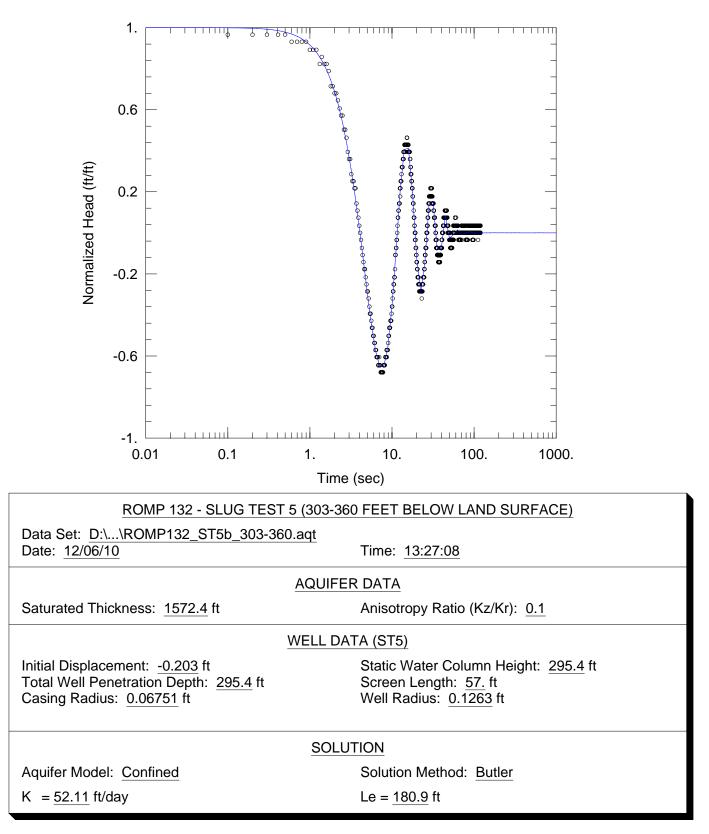
	Wellsite: F	ROMP 132 - Blitch Plantatio	n	Date: 7/29/2010	
	Well: C	Core Hole	Perfo	rmed by: A. Janosik	
Well	Depth (ft bls)	1,687	Test Interval (ft - ft bls)	1,637-1,687	
Test Casing H	leight (ft als)	6.98	Date of Last Development	7/27/2010	
Test Casing I	Diameter (in)	2 3/8	Initial Static WL (ft btoc)	73.31	
Test	Casing Type	NRQ	Final Static WL (ft btoc)	72.47 @ 11:48 8/2/10	
Test Interv	al Length (ft)	50	Slot Size & Filter Pack Type	none	
Annulus Casing H	leight (ft als)		Initial Annulus WL (ft btoc)		

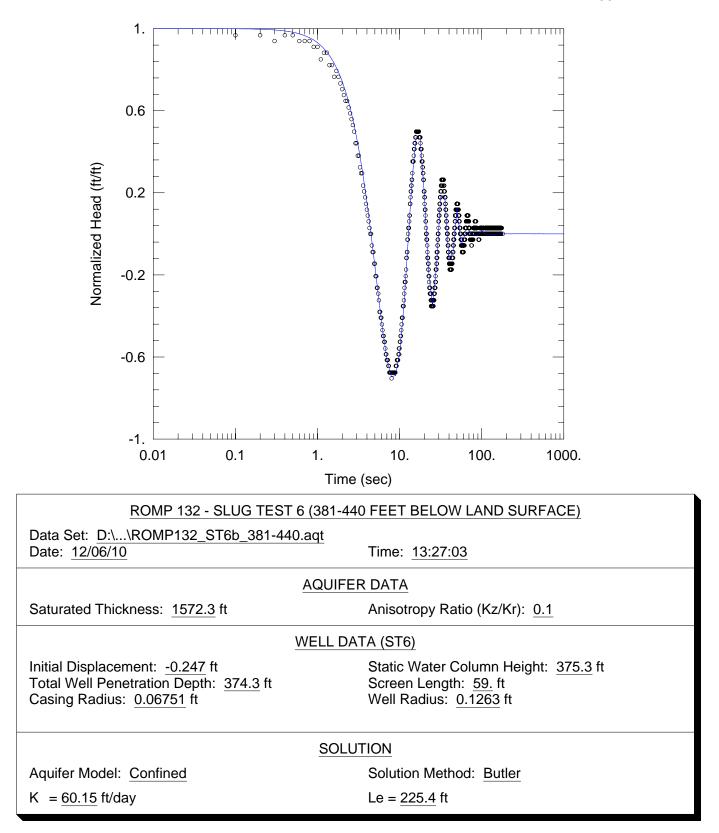

	1 ype (poi)	001101110.	ruipuse o		Reading in an (it)	Exprobava oublinergence (it)
Transducer #1	15		test casing	73.3	-0.06	3.01/3.11
Transducer #2	15		annulus			
Transducer #3	15		pressure			
	Data Lo	gger Rafael	(CR800 - S	<u>N 29</u> 26)	ſ	max possible rebound (or max
	Spacer Le	ngth	5-feet		▲	displ. falling head test)
	Spacer	OD. <u>1.</u>	625-inches		↓	∇
	Comme	ents:			<u>†</u>	v static WL
					↓	max possible displ. (rising head test)
Note: Reading in Ai	r of the Transd	ucer should be	< +/-1% of the	Full Scale of the Tra	ansducer	

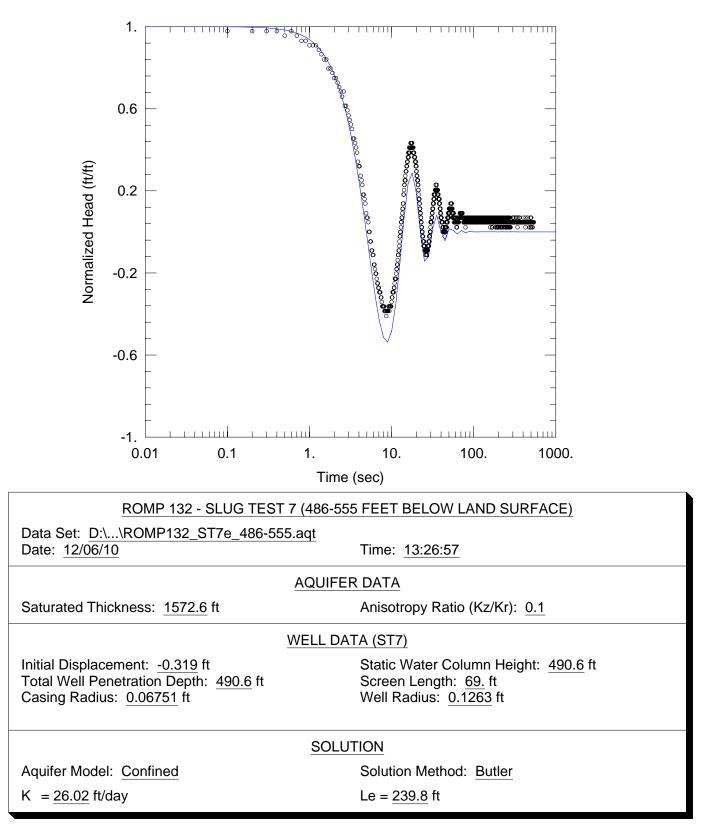
	Test A	Test B	Test C	Test D
Target Diplacement (ft)	n/a			
Initiation method	physical			
Rising/Falling head	falling			
Pre-test XD #1	3.93			
Pre-test XD #2	9.61			
Expected Displacement (ft)	1.566			
Observed Displacement (ft)	lost data			
Slug Discrepancy (%)				
Max Rebound above Static	n/a			
Post-test XD #1				
Residual Dev. from H_o (%)				
Data Logger File Name	ROMP132_ST21			
Specific Conductance (uS)	1413.0			
Temperature (C)	24.2			
Lithology Co	edar Keys - confiner			
K _h (ft/day)	extremely low			
Other				
Comments Le	ft test to run over weekend.	Even after running for 4	days, didn't return to static. Al	so
ha	d problems w/ datalogger ar	nd lost initial data. Ran sl	low enough to know this is def	a confining unit.

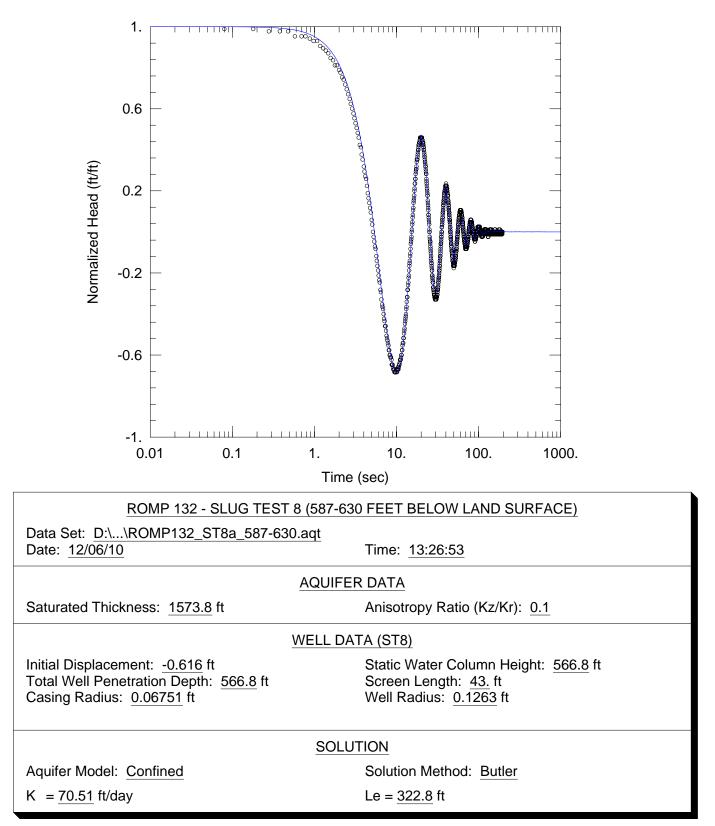

Figure E-27. Field sheet for the slug test conducted between 1,637 and 1,687 feet below land surface (slug test 21) at the ROMP 132 well site in Marion County.

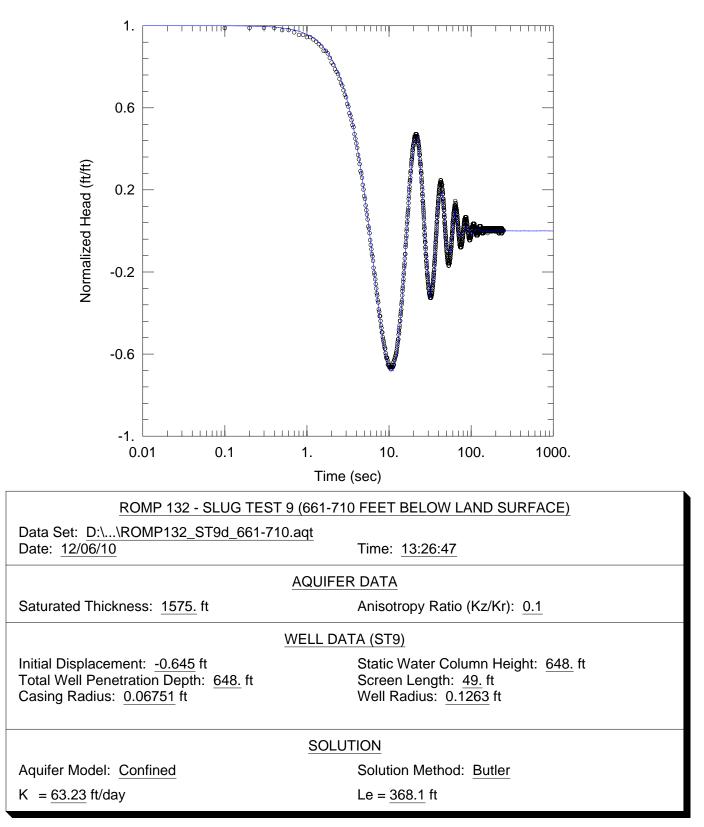

Figure F-1. Curve match solution from AQTESOLV[®] for hydraulic conductivity (Kr) using data from the slug test conducted between 71 and 110 feet below land surface (slug test 1) at the ROMP 132 well site in Marion County.

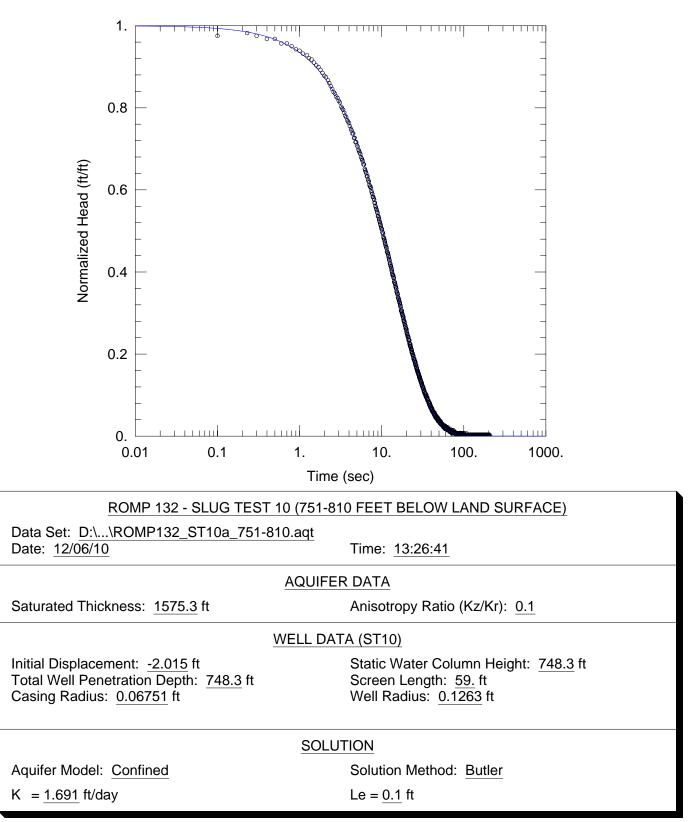

Figure F-2. Curve match solution from AQTESOLV[®] for hydraulic conductivity (Kr) using data from the slug test conducted between 132 and 175 feet below land surface (slug test 2) at the ROMP 132 well site in Marion County.

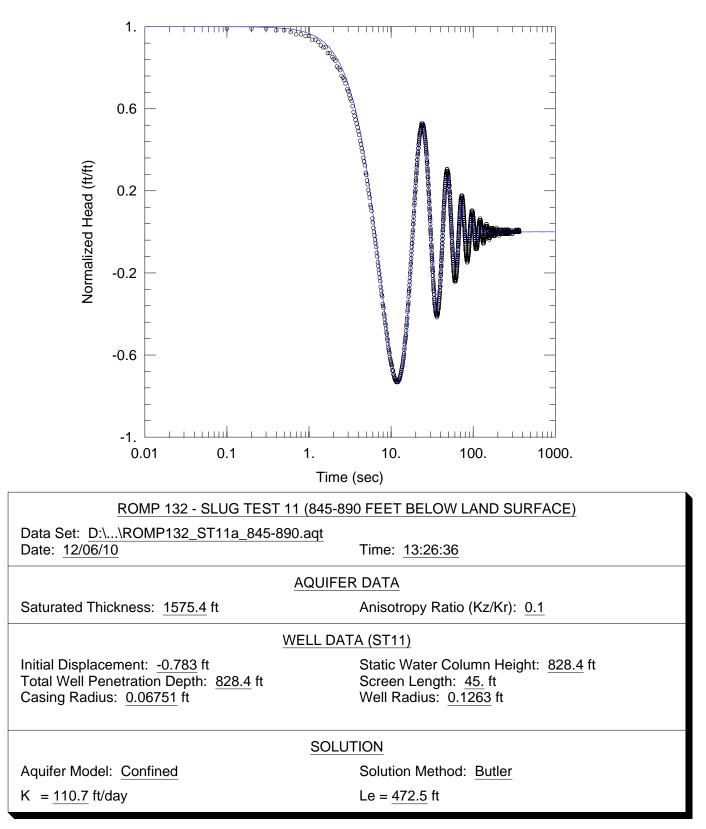

Figure F-3. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 180 and 215 feet below land surface (slug test 3) at the ROMP 132 well site in Marion County.

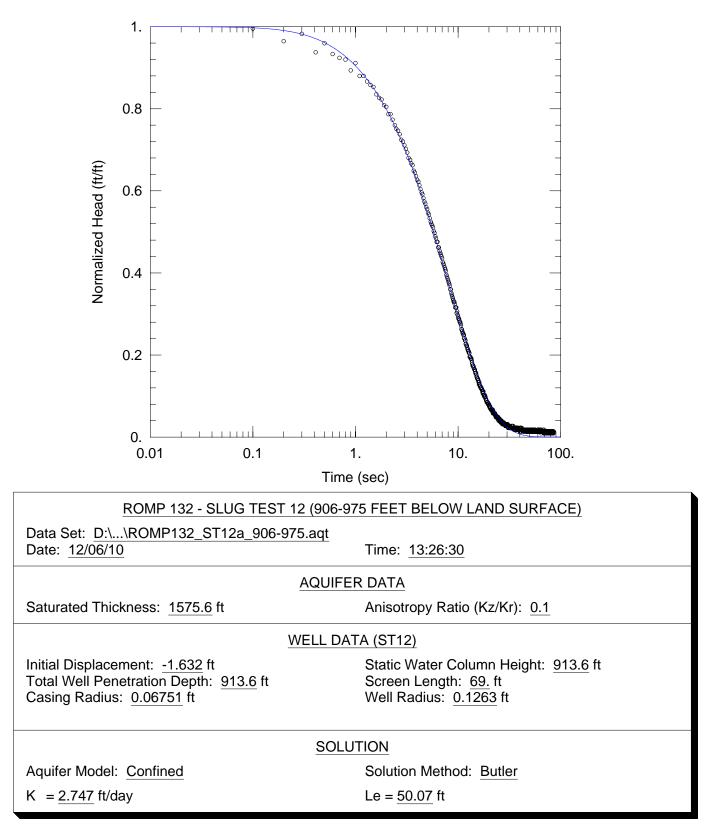

Figure F-4. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 233 and 285 feet below land surface (slug test 4) at the ROMP 132 well site in Marion County.


Figure F-5. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 303 and 360 feet below land surface (slug test 5) at the ROMP 132 well site in Marion County.


Figure F-6. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 381 and 440 feet below land surface (slug test 6) at the ROMP 132 well site in Marion County.


Figure F-7. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 486 and 555 feet below land surface (slug test 7) at the ROMP 132 well site in Marion County.


Figure F-8. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 587 and 630 feet below land surface (slug test 8) at the ROMP 132 well site in Marion County.


Figure F-9. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 661 and 710 feet below land surface (slug test 9) at the ROMP 132 well site in Marion County.

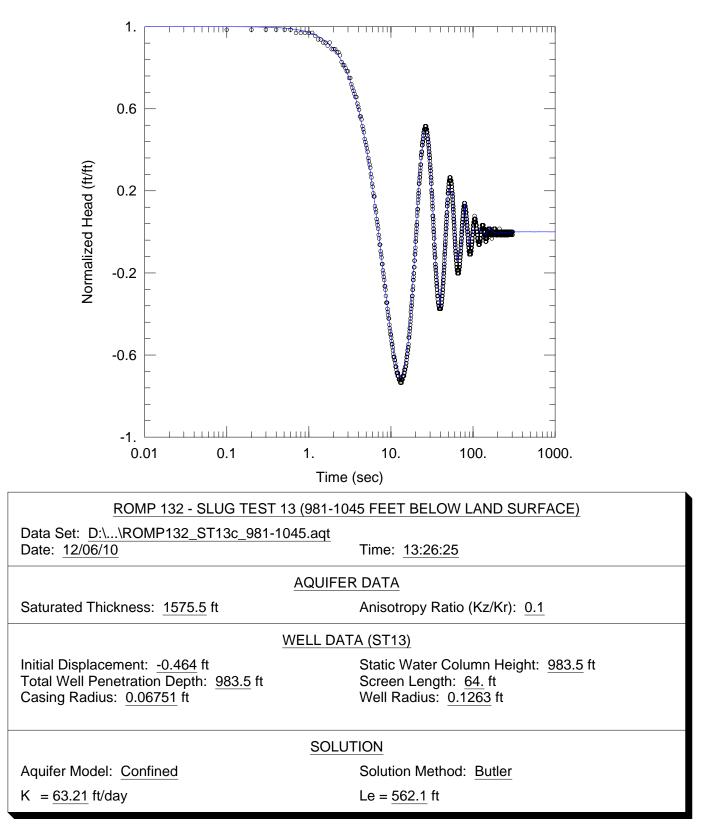
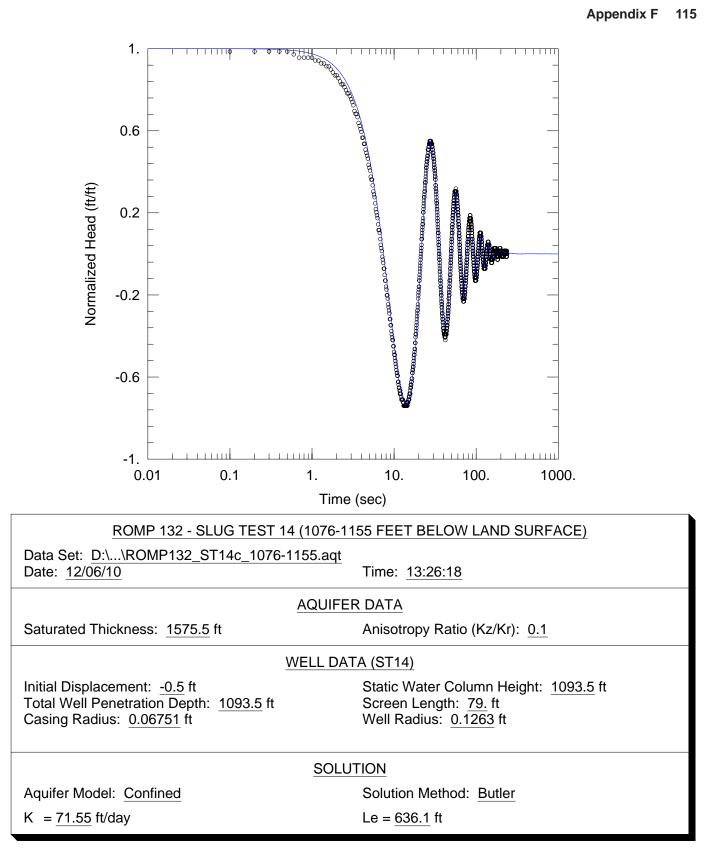
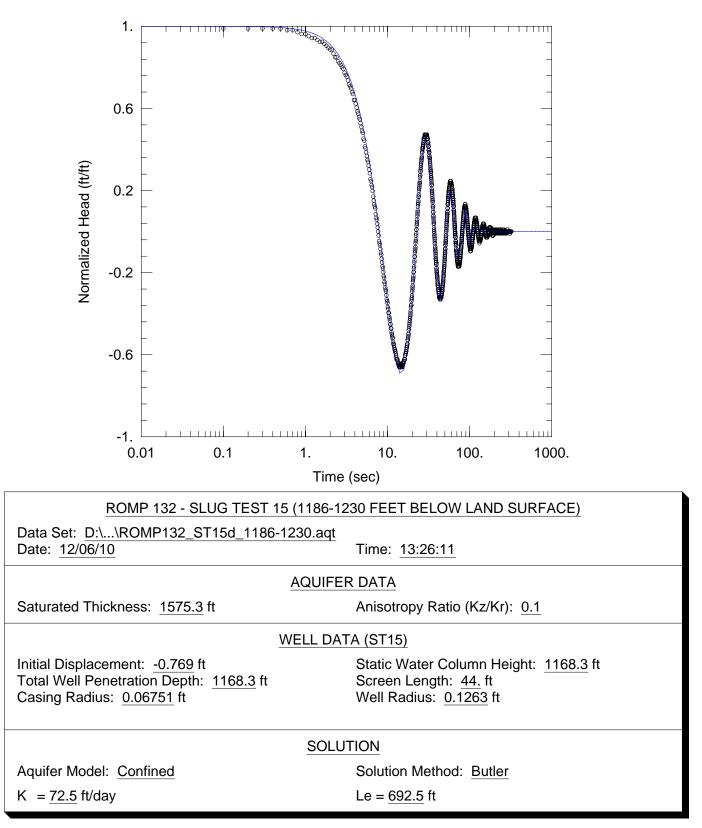
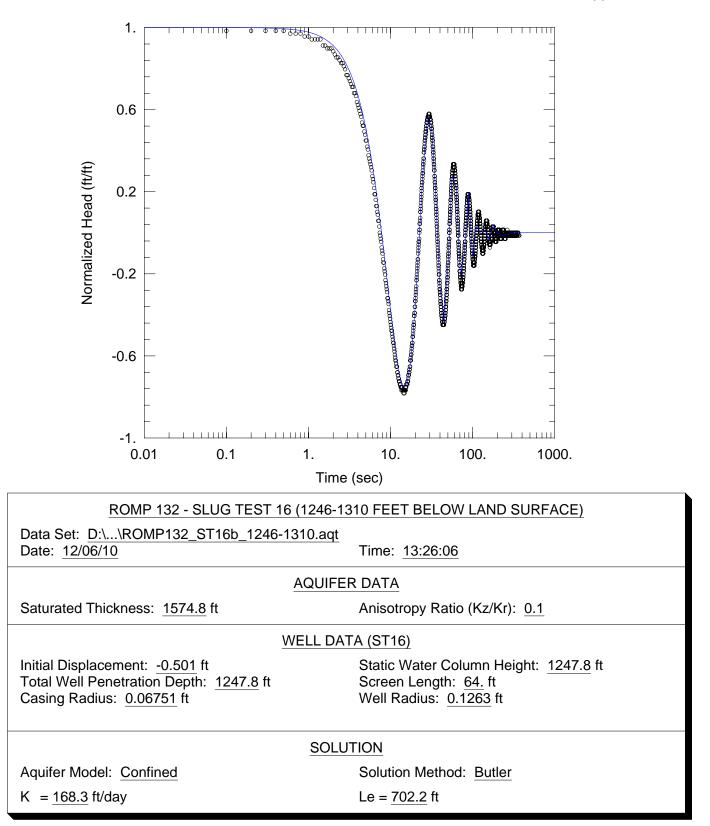
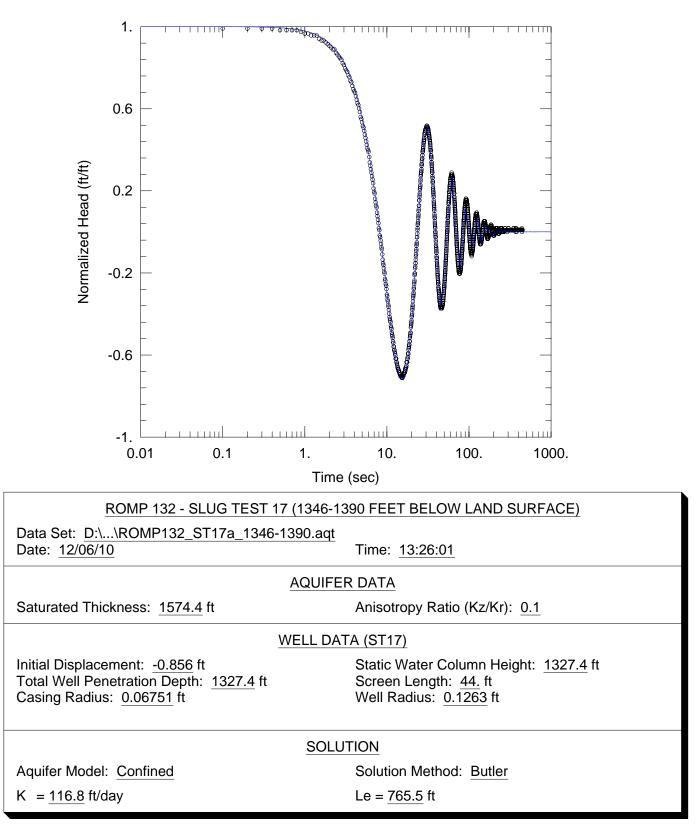

Figure F-10. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 751 and 810 feet below land surface (slug test 10) at the ROMP 132 well site in Marion County.

Figure F-11. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 845 and 890 feet below land surface (slug test 11) at the ROMP 132 well site in Marion County.

Figure F-12. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 906 and 975 feet below land surface (slug test 12) at the ROMP 132 well site in Marion County.

Figure F-13. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 981 and 1,045 feet below land surface (slug test 13) at the ROMP 132 well site in Marion County.


Figure F-14. Curve match solution from AQTESOLV® for hydraulic conductivity (K) using data from the slug test conducted between 1,076 and 1,155 feet below land surface (slug test 14) at the ROMP 132 well site in Marion County.

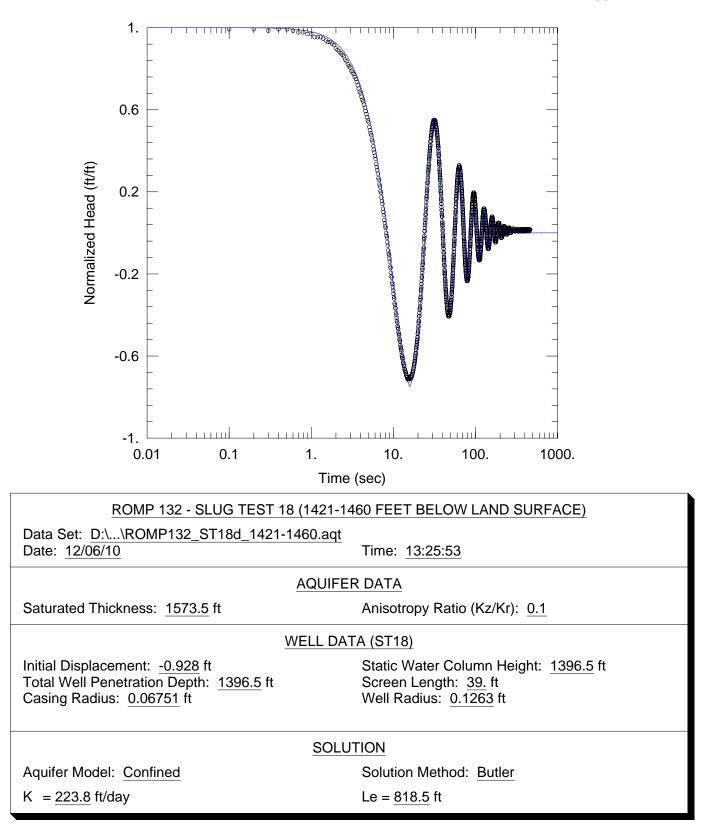

Figure F-15. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 1,186 and 1,230 feet below land surface (slug test 15) at the ROMP 132 well site in Marion County.

Figure F-16. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 1,246 and 1,310 feet below land surface (slug test 16) at the ROMP 132 well site in Marion County.

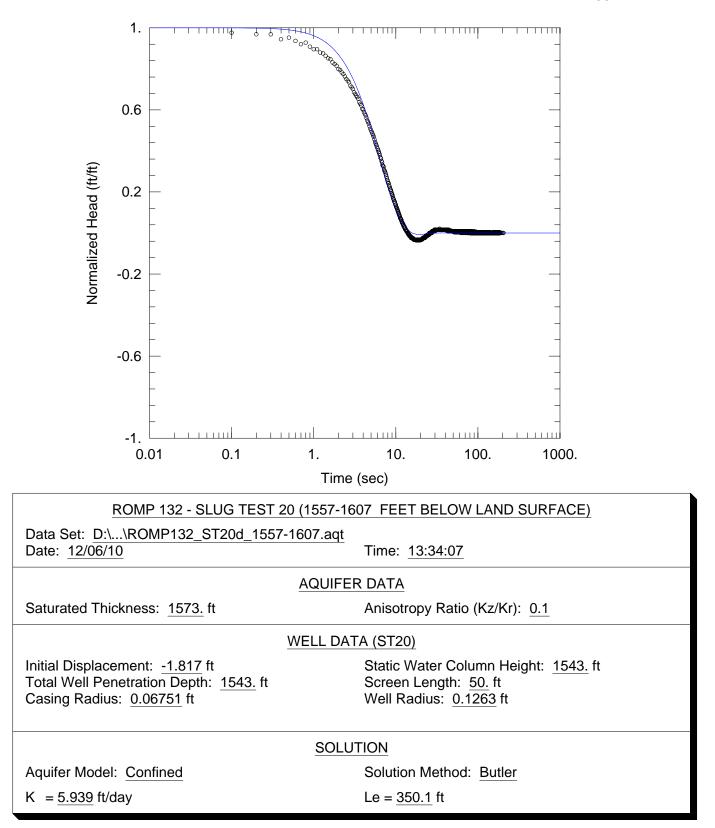

Figure F-17. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 1,346 and 1,390 feet below land surface (slug test 17) at the ROMP 132 well site in Marion County.

Figure F-18. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 1,421 and 1,460 feet below land surface (slug test 18) at the ROMP 132 well site in Marion County.

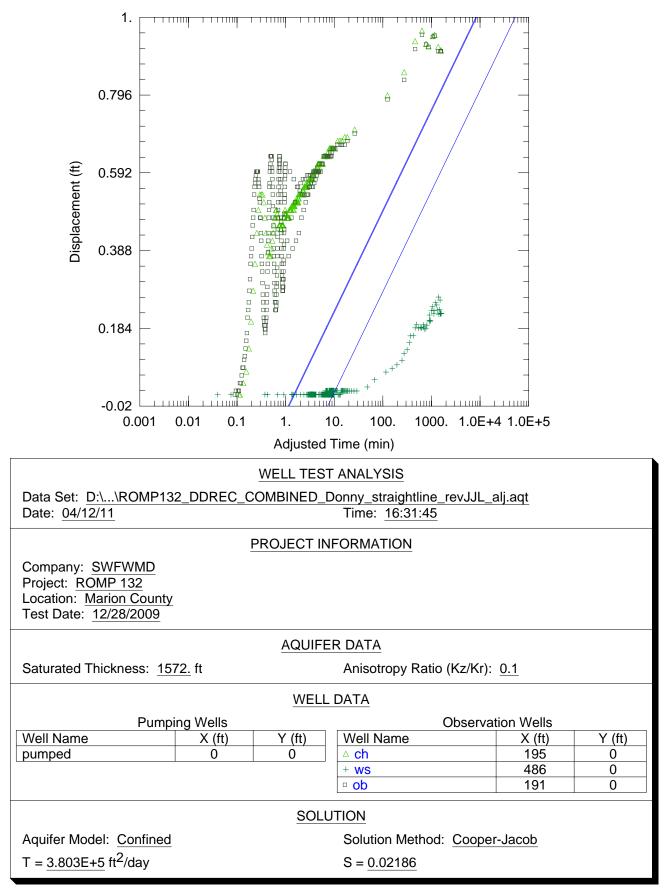
Figure F-19. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 1,466 and 1,500 feet below land surface (slug test 19) at the ROMP 132 well site in Marion County.

Figure F-20. Curve match solution from AQTESOLV[®] for hydraulic conductivity (K) using data from the slug test conducted between 1,557 and 1,607 feet below land surface (slug test 20) at the ROMP 132 well site in Marion County.

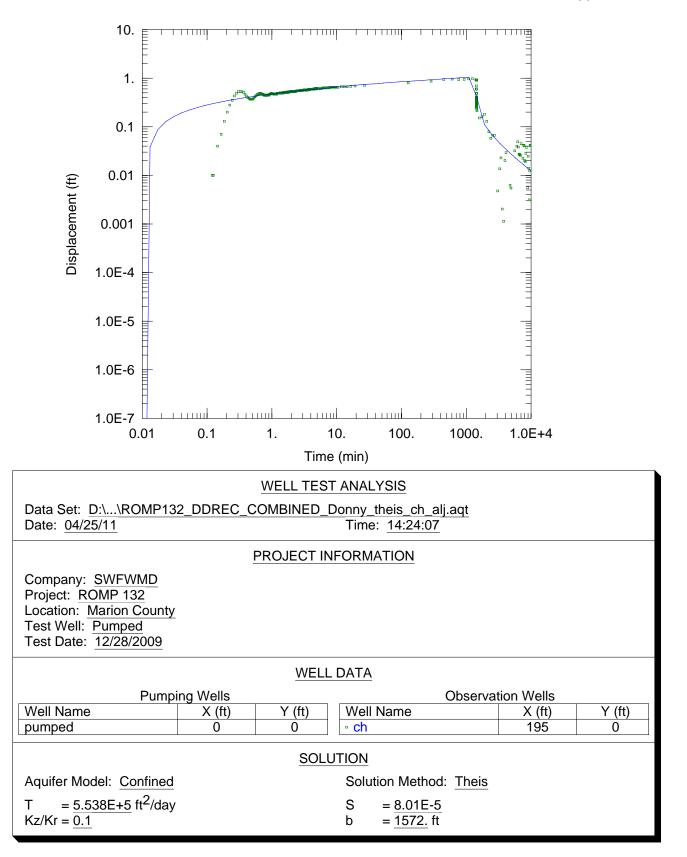
General	Informa	tion:	Upper Flo	oridan aqu	ifer APT -	Informatic	on about d	ata logger	"Donatelle	o"		
S	Site Name:	ROMP 13	2 - Blitch	Plantation		Date: 12/16/2009 - 1/4/2010						
Repor	ting Code:	LWBL				Perf	ormed by:	Anna Jan	osik			
	County:					•	-	28/13/20				
Pun	nped Well:	Temp Upper	r Floridan Ad	quifer (SID 75	50869)	Р	umped Zo	ne OB(s):	Perm UF	A monitor	(SID 750867)	
	ump Type:				,	•	•				le (SID 709163)	
	e/Duration:					•					y (SID 750886)	
	Set Depth:					•					/ (/	
-	formatio											
	atalogger:		(CR 1000))			Time Synd	chronized:	12/16/200)9 and 12	/28/2009 @12:00	
Datal	logger SN:	11463	,	*		•	-	ne Datum:				
	n Name:		2 APT D	ONNY.CR	1	•						
-	Start Date:					•						
	End Date:					-						
ů.	ormation											
Pump	On Time:	12/28/200	9 @ 13:2	3		_	Flow Met	er Totalize	er Start:	25,796,0	000 gal	
Pump	Off Time:	12/29/200	9 @ 13:2	3			Flow Met	er Totalize	er End:	30,006,0)00 gal	
		CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7	CH 8			
Well	\langle			СН	WS	PUMP	MON		Flow Meter		88 Survey	
Riser ht.	als ft										ent 709163A	
TOC elev	elev ft			110.85	116.67	109.01	112.55			<- Elev Ref		
static W/L	btoc ft			67.08	72.82	65.14	68.74			<- Date:	12/16/2009	
static W/L	elev ft			43.77	43.85	43.87	43.81			TOC elev	static WL(btoc)	
XD Rating	psi			20	20	50	20					
Serial No.				0809063	0901238	0809065	0809059					
Reading in Air	ft			0.03		0.04	0.05		0.15	1		
XD depth	btoc ft			87	82	100	89			1		
XD elev	elev ft			23.85	34.67	9.01	23.55			TOC elev	- XD depth(btoc)	
XD subm.	wl tape ft			19.92	9.18	34.86	20.26			WL tape v	alue of submergence	
XD subm.	XD read ft			19.83	9.10	34.93	20.13			XD value o	of submergence	
XD Diff.	ft									Subm. _{WL ta}	_{pe} - Subm. _{XD}	
Date	Time	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7	CH 8	Totalizer	Notes	
				СН	WS	PUMP	MON	logger voltg	FM	(g x 1000)		
Units	>			ft submerg	ft submerg	ft submerg	ft submerg	volts	gpm			
12/22/09	12:41			19.85	9.10	34.93	20.13	13.08			watchdog error = 1	
12/28/09	12:00			19.78	9.04	34.88	20.07	13.34	-0.85	25796	time sync/from logg	
	14:00			19.10	9.05	32.06	19.41	13.26	1960.14		from logger	
	15:00								uneter 1	26000	FM gauge=3000 gp	
	15:00								unplugged	26082	3100 gpm	
	16:00									26256		
	16:55 18:00									26602		
				10.00	0.05	24.02	10.00	10.07	disconnecte			
40/00/00	18:04			18.96	8.95	31.03	19.26	12.37	d from logger		from logger	
12/29/09	8:06								incorrect	29079		
	9:26								readings	29313		

Figure G-1. Field sheet for data collected with the data logger 'Donatello' during the Upper Floridan aquifer performance test conducted at the ROMP 132 well site in Marion County.

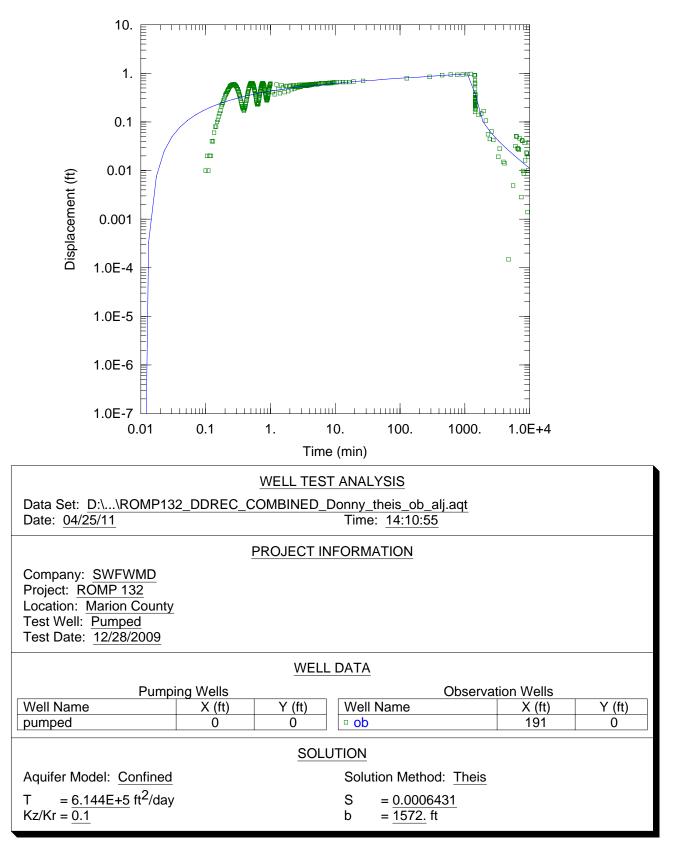
General	Informa	tion:	Upper Flo	oridan aqu	ifer APT -	Informatio	n about da	ata logger	"Leo"		
S	Site Name:					_			9 - 1/4/201	10	
Repor	ting Code:	LWBL				Perf	ormed by:	Anna Jan	osik		
	County:	Marion				-	S/T/R:	28/13/20			
Pum	nped Well:	Temp Uppe	r Floridan Ad	quifer (SID 75	50869)	Р	umped Zo	ne OB(s):	Perm UFA	monitor	(SID 750867)
Pu	ump Type:	10-inch d	iesel lines	haft		-			explorator	y core ho	le (SID 709163)
Test Rate	/Duration:	3000 gpm	n / 24 houi	rs		-			drilling wa	ter supply	ℓ (SID 750886)
Pump \$	Set Depth:	120 feet b	pelow land	surface							
Setup In	formatio	on:									
D	atalogger:	Leonardo (CR 1000) Time Synchronized: 12/1								9 and 12/	28/2009 @12:10
Datal	ogger SN:										
Program	n Name:	ROMP13	2_APT_LE	EO.CR1		-					
-	Start Date:					-					
	End Date:					-					
	ormation										
Pump	On Time:	12/28/200	09 @ 13:2	3			Flow Mete	er Totalize	r Start:	25,796,0	00 gal
Pump	Off Time:	12/29/200	09 @ 13:2	3			Flow Mete	er Totalize	r End:	30,006,0	00 gal
		CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7	CH 8		
Well				СН	WS	PUMP	MON		Flow Meter		8 Survey
Riser ht.	als ft										nt 709163A
TOC elev	elev ft			110.85	116.67	109.01	112.55			<- Elev F	
static W/L	btoc ft			67.08	72.82	65.14	68.74			<- Date:	12/16/2009
static W/L	elev ft			43.77	43.85	43.87	43.81			TOC elev -	static WL(btoc)
XD Rating	psi			20	20	50	20				
Serial No.				0901244	0901240	0809064	0901241			•	essicant. Also when
Reading in Air	ft			0.11		0.22	0.08				well after test, notice were full of pipe dop
XD depth	btoc ft			82	83	95	84				
XD elev	elev ft			28.85	33.67	14.01	28.55			TOC elev -	XD depth(btoc)
XD subm.	wl tape ft			14.92	10.18	29.86	15.26			WL tape va	alue of submergence
XD subm.	XD read ft			14.93	10.21	29.61	15.22			XD value o	f submergence
XD Diff.	ft				-		_			Subm. _{WL tap}	_{be} - Subm. _{XD}
Date	Time	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7	CH 8	Totalizer	Notes
				СН	WS	PUMP	MON	logger voltg		(g x 1000)	
Units	>			ft submerg	ft submerg	ft submerg		volts		(0	
12/22/09	12:35			14.88	10.16	29.50	15.16	13.45			from logger
12/28/09	12:10			14.83	10.10	29.44	15.09	13.45			from logger/time sync
, _ 0, 00	18:00			14.02	10.04	21.10	14.29	10.10			from logger
	10.00			14.02	10.04	21.10	11.20				1000
		ļ		<u> </u>					ļ		
		ļ		<u> </u>					ļ		
											I


Figure G-2. Field sheet for data collected with the data logger 'Leonardo' during the Upper Floridan aquifer performance test conducted at the ROMP 132 well site in Marion County.

General Ir	nformatio	on:	Manual Re	adings							
S	ite Name:		2 - Blitch Pl	-			Date:	12/16/200	9 - 1/4/201	0	
	ting Code:					Perl		Anna Jano			
•	County:							28/13/20			
		700400	750000	750000	750007					- <i>i</i> -	Natao
Date	SID Time	709163 CH	750886 WS	750869 PUMP	750867 MON	rain gauge				Totalizer (g x 1000)	Notes
unit					ft btoc	inches				(9 x 1000)	
12/16/2009	5 /	ft btoc 67.08	ft btoc 72.82	ft btoc 65.14	68.74	inches					
12/22/2009		07.00	12.02	00.14	00.74	0.29					
12/28/2009	11:00					0.23					
12/20/2003	12:00					0.11				25796	
	12:00	67.17	72.96		68.88					20100	
			- BEGIN [
			TER GAU			3100 (BOL	JNCING)			26082	
			GE WATEI								
	16:00									26256	
			CKS UP W	/WATER:	BEGINS F		POOL				
	16:50			,	69.65						
	16:55									26413	
	17:00		73.04								
		POOL RE	ACHES SE	COND CA	VE OPENI	NG @ HIG	HER ELE	VATION, S	INK STILL	DRY	
	18:00									26602	
12/29/2009	8:06									29079	
	8:09				69.80						
	8:11	68.11									
	8:18		73.17								
	9:26									29313	
	10:08									29437	
	11:22									29652	
	12:18				69.76						
	12:21	68.08									
	12:25	WATER L	EVEL TAP	E BATTER	Y DEAD					29835	
	13:23	PUMP OF	F - BEGIN	RECOVER	RY .						
1/4/2010	11:00					0.79					frozen
	11:11				68.9						
	11:22	67.22									
	11:37		73								


Figure G-3. Field sheet for data collected manually during the Upper Floridan aquifer performance test conducted at the ROMP 132 well site in Marion County.

General	Informa	tion:	Upper Flo	oridan aqu	ifer APT -	Informatio	n about da	ata logger	"Mikey" (or	ifice)	
S	Site Name:					_			09 - 1/4/201		
Repor	ting Code:	LWBL				Perf	ormed by:	Anna Jan	osik		
	County:					S/T/R: 28/13/20					
Pun	nped Well:		Floridan Ad	quifer (SID 75	50869)	Pumped Zone OB(s): Perm UFA monitor (SID 75					(SID 750867)
	ump Type:				·	•				le (SID 709163)	
	/Duration:					•				-	(SID 750886)
	Set Depth:					•				,	· · · · · · · · · · · · · · · · · · ·
Setup In	formatio	on:									
D	atalogger:	Michelang	gelo (CR 1	000)			Time Sync	hronized:	12/28/200	9 @ 11:5	4
Datal	ogger SN: 11462 Time Datum: NI										
		e: ROMP132_APT_orifice.CR1									
-		te: 12/28/2009 @ 11:55									
-	End Date:					•					
-	ormation										
Pump	On Time:	12/28/200	9 @ 13:2	3			Flow Met	er Totalize	er Start:	25,796,0	00 gal
	Off Time:					•	Flow Mete	er Totalize	er End:	30,006,0	00 gal
		CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7	CH 8		
Well				Orifice	Orifice				Flow Meter		
Riser ht.	als ft			n/a	n/a						
OC elev	elev ft			n/a	n/a					<- Elev	Ref
tatic W/L	btoc ft			n/a	n/a					<- Date:	-
static W/L	elev ft			n/a	n/a					TOC elev -	static WL(btoc)
XD Rating	psi			20	20						
Serial No.				-	0809057						
Reading in Air	ft			0.06	0.05						
XD depth	btoc ft			n/a	n/a						
XD depth XD elev	elev ft			n/a	n/a					TOC elev -	XD depth(btoc)
XD elev XD subm.	wl tape ft			n/a	n/a						alue of submergence
KD subm.	-			n/a	n/a					•	f submergence
XD Subin. XD Diff.	XD read ft ft			n/a	n/a						_e - Subm. _{xD}
Date	Time	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7	CH 8	Totalizer	Notes
Dale	Time		0112	Orifice	Orifice	015			logger voltg		
Units				ft H ₂ O	ft H ₂ O				volts	(9 × 1000)	
12/28/09	> 11:54			0.06	-						time ever
12/20/09	11.54			0.06	0.05				12.55		time sync
											l


Figure G-4. Field sheet for data collected with the data logger 'Michelangelo' during the Upper Floridan aquifer performance test conducted at the ROMP 132 well site in Marion County.

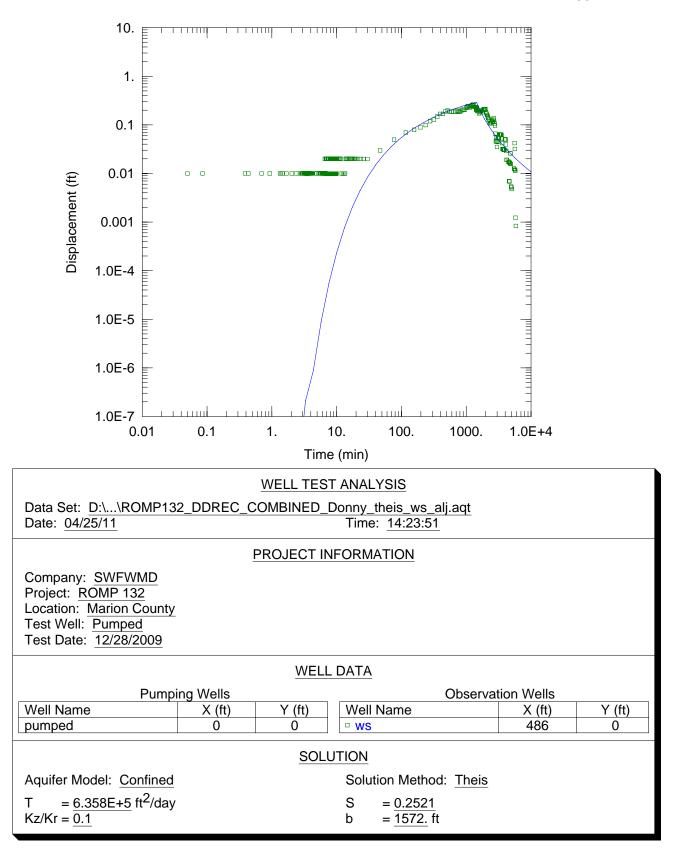

Figure H-1. Curve match solution output from AQTESOLV[®] using the Cooper Jacob straight line method for the estimation of transmissivity (T) using groundwater level data collected from the Upper Floridan aquifer monitor well, exploratory core hole, and drilling water supply well during the Upper Floridan aquifer performance test at the ROMP 132 well site in Marion County.

Figure H-2. Curve match solution output from AQTESOLV[®] using the Theis/Hantush method for the estimation of transmissivity (T) using groundwater level data collected from the exploratory core hole during the Upper Floridan aquifer performance test at the ROMP 132 well site in Marion County.

Figure H-3. Curve match solution output from AQTESOLV[®] using the Theis/Hantush method for the estimation of transmissivity (T) using groundwater level data collected from the Upper Floridan aquifer monitor well during the Upper Floridan aquifer performance test at the ROMP 132 well site in Marion County.

Figure H-4. Curve match solution output from AQTESOLV[®] using the Theis/Hantush method for the estimation of transmissivity (T) using groundwater level data collected from the water supply well during the Upper Floridan aquifer performance test at the ROMP 132 well site in Marion County.

Well: Core Hole Time: 11 SID# 709163 Performed by: A Well Depth (ft bls) 110 Packed Integration of the second se	. Janosik erval (ft-ft bls) 71-110 val (m-m bls) 21.6-33.9 val WL (ft bls) 64.21 us WL (ft bls) 64.21 us WL (ft bls) none 5 gallons 14 gallons 19 gallons 30 minutes ested Bailer
Well: Core Hole Time: 1: SID# 709163 Performed by: A Well Depth (ft bls) 110 Packed International Content of the state of the s	2:25 . Janosik erval (ft-ft bls) 71-110 val (m-m bls) 21.6-33.9 val WL (ft bls) 64.21 us WL (ft bls) none 5 gallons 14 gallons 19 gallons 30 minutes ested Bailer
SID# 709163 Performed by: A Well Depth (ft bls) 110 Packed Interval Casing (HW) Depth (ft bls) 71 Packed Interval Casing (HW) Diameter (in.) 4 Initial Test Interval Hole Diameter (in.) 4 Initial Annul Mathematication 10.6528 g/ft X 7 1 0.6528 g/ft X 39 ft (interval) = 2 0.3623 g/ft X 39 ft (interval) = Pump Method Rental Geosub Airline Length none feet Discharge Rate (gpm) 2 gpm gpm Pump Time / Volume 10 minutes X THREE = Initial row Notes and the state of the state	. Janosik erval (ft-ft bls) 71-110 val (m-m bls) 21.6-33.9 val WL (ft bls) 64.21 us WL (ft bls) none 5 gallons 14 gallons 19 gallons 30 minutes ested Bailer
Casing (HW) Depth (ft bls) 71 Packed Inter Casing (HW) Diameter (in.) 4 Hole Diameter (in.) NQ (2 ³ /8) Initial Test Interv Initial Annul Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or No pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	val (m-m bls) 21.6-33.5 val WL (ft bls) 64.21 us WL (ft bls) none 5 gallons 14 gallons 19 gallons 30 minutes ested Bailer minutes
Casing (HW) Depth (ft bls) 71 Packed Inter Casing (HW) Diameter (in.) 4 Hole Diameter (in.) NQ (2 ³ /8) Initial Test Interv Initial Annul Initial Annul Initial Annul Initial Annul Purge Volume (gallons) 1 0.6528 g/ft X 7 ft (interval) = 2 0.3623 g/ft X 39 ft (interval) = 2 0.3623 g/ft X 39 ft (interval) = TOTAL PURGE VOLUME (one) = Pump Method Rental Geosub Airline Length none feet Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or Norments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	val (m-m bls) 21.6-33.5 val WL (ft bls) 64.21 us WL (ft bls) none 5 gallons 14 gallons 19 gallons 30 minutes ested Bailer minutes
Casing (HW) Diameter (in.) 4 Initial Test Intervention Hole Diameter (in.) $NQ (2^{3}/8)$ Initial Annul Initial	Al WL (ft bls) 64.21 us WL (ft bls) none 5 gallons 14 gallons 19 gallons 30 minutes ested Bailer
Hole Diameter (in.) NQ (2 ³ /8) Initial Annul te: 1ft = 0.3048 m 1 0.6528 g/ft X 7 ft (interval) = 2 1 0.6528 g/ft X 7 ft (interval) = 1 1 2 0.3623 g/ft X 39 ft (interval) = 1 1 TOTAL PURGE VOLUME (one) = Pump Method Rental Geosub Airline Length none feet Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE =	us WL (ft bls) <u>none</u> 5 gallons <u>14</u> gallons 19 gallons 30 minutes ested Bailer
te: 1ft = 0.3048 m Irge Volume (gallons) 1 0.6528 g/ft X 7 ft (interval) = 2 0.3623 g/ft X 39 ft (interval) = TOTAL PURGE VOLUME (one) = Pump Method Rental Geosub Airline Length none feet Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or Norments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	5 gallons <u>14</u> gallons <u>19</u> gallons <u>30</u> minutes ested Bailer
1 0.6528 g/ft X 7 ft (interval) = 2 0.3623 g/ft X 39 ft (interval) = TOTAL PURGE VOLUME (one) = Pump Method Airline Length none feet Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or No pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	14 gallons 19 gallons 30 minutes ested Bailer
1 0.6528 g/ft X 7 ft (interval) = 2 0.3623 g/ft X 39 ft (interval) = TOTAL PURGE VOLUME (one) = Pump Method Airline Length none feet Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or Norments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	14 gallons 19 gallons 30 minutes ested Bailer
Pump Method Rental Geosub Airline Length none feet gpm Pump Time / Volume 10 Minutes X THREE =	19 gallons 30 minutes ested Bailer
Pump Method Rental Geosub Airline Length none feet Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or Norments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	30 minutes ested Bailer
Airline Length none feet Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or Normments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	ested Bailer
Discharge Rate (gpm) 2 gpm Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or Norments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	ested Bailer
Pump Time / Volume 10 minutes X THREE = Collection Method: Surface Discharge or Wireline Bailer or Norments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	ested Bailer
Collection Method: Surface Discharge or Wireline Bailer or Norments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	ested Bailer
pmments: No packer. Tested through HW. Water level too low to use Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	
Pump set 71 ft btoc = 69.62 ft bls; WL 65.59 ft btoc = 64.2	
te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft	1 ft bls; dd to 65.80 ft btoc
est Information	
Water Quality During Purge	
Time Sp. Cond. Temp. pH	
11:10 372.9 24.3 6.96	
11:20 381.6 23.9 7.07 g	Start Purge
11:31 382.1 23.9 7.18	
	End Purge 12:30
11:55 382.3 23.9 7.27	
	mple Time <u>12:25</u>
12:17 382.3 23.9 7.33	
12:25 382.7 23.9 7.34	
	Distant
Multimeter	Photometer
Sp. Cond. (µS/cm) 382.7 Chloride (mg/l)	7.9
Sp. Cond. (μS/cm)382.7Chloride (mg/l)Temperature (°C)23.9Sulfate (mg/l)	
Sp. Cond. (µS/cm) 382.7 Chloride (mg/l)	7.9
Sp. Cond. (µS/cm)382.7Chloride (mg/l)Temperature (°C)23.9Sulfate (mg/l)	7.9 9

Figure I-1. Field sheet for the groundwater quality sample collected between 71 and 110 feet below land surface (water quality sample 1) at the ROMP 132 well site in Marion County.

					WQ No.	2
General Info						
		 Blitch Plantat 	tion		ate: 7/8/2008	
-	Core Hole				ime: 15:50	
SID#	709163			Performed	by: <u>A. Janosik</u>	
	Well	Depth (ft bls)	175	Pack	ked Interval (ft-ft bls)) 132-175
С		Depth (ft bls)			ed Interval (m-m bls)	
		Diameter (in.)			t Interval WL (ft bls	
		Diameter (in.)			Annulus WL (ft bls	
Note: 1ft = 0.304		() <u>-</u>		-	(
Purge Volum	, , ,					-
1	0.3623	g/ft X	132	ft (interval)	= 48	gallons
2	0.6528	g/ft X	43	ft (interval)	= 28	gallons
		тот	AL PURGE	VOLUME (on	e) = 76	gallons
_		D				
		Reverse Air	(l			_
	irline Length		feet			
	Rate (gpm) me / Volume		gpm minutes X T	HREE - T	23	minutes
•					-	minutes
					or Nested Bailer	
Jomments:	No packer.	Tested through	I HW (Set at	1 1 3 2 11 DIS)		
lote: NO-0 230		0.6528 gal/ft; ope	en hole(NO)-0	3623 gal/ft		
Vole. NQ=0.200	/i ga/it, 1100=0	5.0520 gai/it, opt		.0020 gai/it		
Test Informa	ation					
	1	Water Quality	During Purg	е		
	Time	Sp. Cond.	Temp.	рН		
	15:20	405.5	23.3	7.06		
	15:30	407.9	22.9	7.55	Start Purge _	12:10
	15:40	400.1	22.9	7.80		
	15:50	407.9	22.9	7.91	End Purge	16:15
		ļ			Sample Time	15:50
		↓				
		↓				
l		<u> </u>				
		Multime	eter		Photomete	er
Sn Ca	ond. (µS/cm)			Chloride (r		
	perature (°C)			```	···g/··/	———————————————————————————————————————
remp				Sulfate (r		
	pH (SU)	7.91		рн	(SU) <u>8.10</u>	
Samples Ser	nt to District's	s Laboratory fr	or Standard	Complete Ana	alysis?(Y) or N	
		s Laboratory It	Ji Jianuaru			

Figure I-2. Field sheet for the groundwater quality sample collected between 132 and 175 feet below land surface (water quality sample 2) at the ROMP 132 well site in Marion County.

Well Depth (ft bls) 215 Casing (HW) Depth (ft bls) 133 Casing (HW) Diameter (in.) 4 Hole Diameter (in.) 4 Hole Diameter (in.) NQ (2 $\frac{3}{8}$) e: 1ft = 0.3048 m rge Volume (gallons) 1 0.2301 2 0.3623 g/ft X 1 0.2301 g/ft X 1 0.2301 g/ft X 1 0.3623 g/ft X 1 0.2301 g/ft X 1 0.623 g/ft X 1 0.2301 g/ft X 1 0.2301 g/ft X 1 160 feet 16 Discharge Rate (gpm) 16 Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments:	Packed Interval (m-m bls) 54.9-65. Initial Test Interval WL (ft bls) not measur Initial Annulus WL (ft bls) not measur not measur not measur not measur allons gallons UME (one) = 54 gallons Gallons Gallons ME (one) = 54 gallons gallons ME (one) = 54 gallons ME (one) = 54 minutes ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one) = 54 ME (one
Well:Core Hole 709163Well Depth (ft bls)215 Casing (HW) Depth (ft bls)133 Casing (HW) Diameter (in.)4 Hole Diameter (in.)4 Hole Diameter (in.)NQ (2 $^3/8$)e: 1ft = 0.3048 mrge Volume (gallons) 110.2301 g/ft20.3623g/ftX10.2301 g/ft20.3623g/ftX160 gpmPump Method Reverse Air Airline Length160 pump Time / Volume3minutes X THR Collection Method:Collection Method:Curface Discharge or Wirel mments:e: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623St InformationWater Quality During Purge TimeSp. Cond. Temp.12:15398.023.012:25419.922.612:35434.622.5	Time: 12:52 Performed by: A. Janosik Packed Interval (ft-ft bls) 180-215 Packed Interval (m-m bls) 54.9-65.3 Initial Test Interval WL (ft bls) not measure Initial Annulus WL (ft bls) not measure Initial Annulus WL (ft bls) gallons Interval) 13 gallons gallons UME (one) = 54 gallons gallons EE = 10 minutes minutes
SID#709163Well Depth (ft bls)215Casing (HW) Depth (ft bls)133Casing (HW) Diameter (in.)4Hole Diameter (in.)4Hole Diameter (in.)NQ (2 $\frac{3}{8}$)e: 1ft = 0.3048 mrge Volume (gallons)10.2301g/ftX18020.3623g/ftX35ft (TOTAL PURGE VOIPump Method Reverse AirAirline Length160feetDischarge Rate (gpm)16gpmPump Time / Volume3minutes X THRCollection Method: Surface Discharge or Wirelmments:e: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623St InformationWater Quality During PurgeTime Sp. Cond. Temp.12:15398.023.012:25419.922.612:35434.622.5	Performed by: A. Janosik Packed Interval (ft-ft bls) 180-215 Packed Interval (m-m bls) 54.9-65. Initial Test Interval WL (ft bls) not measur Initial Annulus WL (ft bls) not measur Interval) = 41 gallons gallons UME (one) = 54 gallons E = 10 minutes ne Bailer or Nested Bailer
Well Depth (ft bls)215Casing (HW) Depth (ft bls)133Casing (HW) Diameter (in.)4Hole Diameter (in.)NQ (2 $\frac{3}{8}$)e: 1ft = 0.3048 mrge Volume (gallons)10.230120.3623g/ftX10.230120.3623g/ftX1180ft (20.3623g/ftX160feetDischarge Rate (gpm)16gpmPump Time / Volume3minutes X THRCollection Method:Collection Method:Surface Discharge or Wirelmments:e: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623st InformationWater Quality During PurgeTimeSp. Cond.Temp.12:15398.023.012:25419.922.612:35434.622.5	Packed Interval (ft-ft bls) 180-215 Packed Interval (m-m bls) 54.9-65. Initial Test Interval WL (ft bls) not measur Initial Annulus WL (ft bls) not measur Interval) = 41 gallons measur ME (one) = 54 gallons E = 10 minutes ne Bailer or Nested Bailer
Casing (HW) Depth (ft bls) 133 Casing (HW) Diameter (in.) 4 Hole Diameter (in.) NQ ($2^{3}/8$) a: 1ft = 0.3048 m rge Volume (gallons) 1 0.2301 g/ft X 180 ft (2 0.3623 g/ft X 35 ft (TOTAL PURGE VOI Pump Method Reverse Air Airline Length 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: \bigcirc urface Discharge or Wirel mments: a: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 St Information Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	Packed Interval (m-m bls) Initial Test Interval WL (ft bls) Initial Annulus WL (ft bls) not measur not measur sur not measur not me
Hole Diameter (in.) NQ $(2^{3}/8)$ is: 1ft = 0.3048 m ige Volume (gallons) 1 0.2301 g/ft X 180 ft (2 0.3623 g/ft X 35 ft (TOTAL PURGE VOL Pump Method Reverse Air Airline Length 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments: a: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 st Information Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	Initial Annulus WL (ft bls) <u>not measur</u> nterval) = <u>41</u> gallons nterval) = <u>13</u> gallons UME (one) = <u>54</u> gallons EE = <u>10</u> minutes ne Bailer or Nested Bailer
Hole Diameter (in.) NQ $(2^{3}/8)$ is: 1ft = 0.3048 m ige Volume (gallons) 1 0.2301 g/ft X 180 ft (2 0.3623 g/ft X 35 ft (TOTAL PURGE VOL Pump Method Reverse Air Airline Length 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments: a: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 st Information Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	Initial Annulus WL (ft bls) <u>not measur</u> nterval) = <u>41</u> gallons nterval) = <u>13</u> gallons UME (one) = <u>54</u> gallons EE = <u>10</u> minutes ne Bailer or Nested Bailer
a: 1ft = 0.3048 m inge Volume (gallons) 1 0.2301 2 0.3623 g/ft X 1 0.2301 g/ft X 1 0.2301 g/ft X 35 ft (TOTAL PURGE VOI Pump Method Reverse Air Airline Length 160 pump Time / Volume 3 Pump Time / Volume 3 Collection Method: Surface Discharge or Wirel mments:	$\begin{array}{rcl} \text{nterval} &= & 41 & \text{gallons} \\ \text{nterval} &= & 13 & \text{gallons} \\ \text{UME (one)} &= & 54 & \text{gallons} \\ \hline \text{E = } & & 10 & \text{minutes} \\ \text{ne Bailer or Nested Bailer} \\ \end{array}$
1 0.2301 g/ft X 180 ft (2 0.3623 g/ft X 35 ft (TOTAL PURGE VOI Pump Method Reverse Air Airline Length 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments:	$\begin{array}{c} 13 \\ \text{Gallons} \\ Gall$
2 0.3623 g/ft X 35 ft (TOTAL PURGE VOI Pump Method Reverse Air Airline Length 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments:	Herval) = 13 gallons $UME (one) = 54 gallons$ $E = 10 minutes$ $He Bailer or Nested Bailer$
2 0.3623 g/ft X 35 ft (TOTAL PURGE VOI Pump Method Reverse Air 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments:	Herval) = 13 gallons $UME (one) = 54 gallons$ $E = 10 minutes$ $He Bailer or Nested Bailer$
Pump Method Reverse Air Airline Length 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments:	E = <u>10</u> minutes ne Bailer or Nested Bailer
Airline Length 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments: e: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 st Information Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	ne Bailer or Nested Bailer
Airline Length 160 feet Discharge Rate (gpm) 16 gpm Pump Time / Volume 3 minutes X THR Collection Method: Surface Discharge or Wirel mments: e: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 st Information Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	ne Bailer or Nested Bailer
Collection Method: Surface Discharge or Wirel mments:	ne Bailer or Nested Bailer
Collection Method: Surface Discharge or Wirel mments:	ne Bailer or Nested Bailer
Collection Method: Surface Discharge or Wirel mments:	ne Bailer or Nested Bailer
e: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 st Information Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	gal/ft
e: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 st Information Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	gal/ft
Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	gal/ft
Water Quality During Purge Time Sp. Cond. Temp. 12:15 398.0 23.0 12:25 419.9 22.6 12:35 434.6 22.5	
Water Quality During PurgeTimeSp. Cond.Temp.12:15398.023.012:25419.922.612:35434.622.5	
TimeSp. Cond.Temp.12:15398.023.012:25419.922.612:35434.622.5	
TimeSp. Cond.Temp.12:15398.023.012:25419.922.612:35434.622.5	
12:15398.023.012:25419.922.612:35434.622.5	pH
12:25419.922.612:35434.622.5	7.11
12:35 434.6 22.5	
	7.65 Start Purge <u>12:02</u> 7.85
	7.92 End Purge <u>13:05</u>
	Sample Time 12:52
Multimeter	
Sp. Cond. (µS/cm) 427.2 (Photometer
Temperature (°C) 22.5	
pH (SU) 7.97	hloride (mg/l) 8.7
	hloride (mg/l) 8.7 Sulfate (mg/l) 7
	hloride (mg/l) 8.7

Figure I-3. Field sheet for the groundwater quality sample collected between 180 and 215 feet below land surface (water quality sample 3) at the ROMP 132 well site in Marion County.

Wellsite: ROMP 132 - Blitch Plantation Date: 7/22/2008 Well: Core Hole Time: 17:20 SID# 709163 Performed by: A.Janosik Well Depth (ft bis) 285 Packed Interval (th-ft bis) 233-285 Casing (HW) Depth (ft bis) 133 Packed Interval (th-ft bis) 710-86.9 Initial Test Interval W. [ft bis] not measured Initial Test Interval W. [ft bis] not measured det: Ift = 0.3048 m It (interval) = 54 gallons 1 0.2301 g/ft X 233 ft (interval) = 19 gallons 2 0.3023 g/ft X 233 ft (interval) = 19 gallons 2 0.3623 g/ft X 233 ft (interval) = 19 gallons 2 0.3623 g/ft X 233 minutes X THREE = 10 minutes Collection Method Reverse Air Airline Length 200 feet minutes X THREE = 10 minu		WQ No. 4
Weil: Core Hole Time: 17:20 SID# 709163 Performed by: A. Janosik Weil Depth (ft bis) 285 Casing (HW) Depth (ft bis) 133 Packed Interval (ft-ft bis) 233-285 Casing (HW) Diameter (in.) 4 Initial Test Interval WL (ft bis) not measured Hole Diameter (in.) NQ (2.7e) Initial Annulus WL (ft bis) not measured 1 0.2301 g/ft X 232 ft (interval) = 54 gallons 1 0.2301 g/ft X 233 52 ft (interval) = 54 gallons 1 0.2301 g/ft X 233 52 ft (interval) = 54 gallons 2 0.3623 g/ft X 233 52 ft (interval) = 54 gallons 2 0.3623 g/ft X 233 74 ft (interval) = 54 gallons 2 0.3081 minutes X THREE 10 minutes minutes X THREE 10 minutes Sp. Cond. (pm)	General Information	
SID# T09163 Performed by: A. Janosik Well Depth (ft bis) 285 Packed Interval (m. ft bis) 233-285 Casing (HW) Depth (ft bis) 133 Packed Interval (m. ft bis) 100 (2 %) Initial Test Interval WL (ft bis) 101 (110 (110 (110 (110 (110 (110 (110		
Well Depth (ft bls) 285 Packed Interval (ft-ft bls) 233-285 Casing (HW) Depth (ft bls) 133 Packed Interval (ft-ft bls) 710-86.9 Initial Test Interval WL (ft bls) intereaued Initial Test Interval WL (ft bls) intereaued Initial Test Interval WL (ft bls) intereaued Initial Test Interval WL (ft bls) intereaued ote: ft = 0.3048 m 10.2301 g/ft X 233 ft (interval) = 54 gallons 1 0.2301 g/ft X 233 ft (interval) = 54 gallons 2 0.3623 g/ft X 233 ft (interval) = 54 gallons 2 0.3623 g/ft X 233 ft (interval) = 54 gallons 2 0.3623 g/ft X 233 ft (interval) = 54 gallons 9 10 0.301 gallons minutes ToTAL PURGE VOLUME (one) = 72 gallons 9 10 0.301 20 ftest ftest ftest ftest ftest ftest ftest ftest <		
Casing (HW) Depth (ft bls) 133 Packed Interval (m-m bls) 71.0-86.9 Casing (HW) Diameter (in.) NQ (2 */s) Initial Test Interval WL (ft bls) not measured Initial Annulus WL (ft bls) 0.3048 m Initial Annulus WL (ft bls) not measured 1 0.2301 g/ft X 233 ft (interval) = 54 gallons 2 0.3623 g/ft X 235 ft (interval) = 72 gallons 2 0.3623 g/ft X 235 ft (interval) = 72 gallons 2 0.3623 g/ft X 235 ft (interval) = 72 gallons 2 0.3623 g/ft X 233 ft (interval) = 72 gallons 2 0.3623 g/ft X 233 ft (interval) = 72 gallons 2 0.3623 g/ft X 233 ft (interval) = 72 gallons 3 minutes X HREE = 10 minutes ft (interval) ft (int	SID#	Performed by: <u>A. Janosik</u>
Casing (HW) Depth (ft bls) 133 Casing (HW) Diameter (in.) 4 Hole Diameter (in.) $NQ(2^{-3})$ Initial Test Interval WL (ft bls) not measured Initial Annulus WL (ft bls) 10 measured Initial Annulus WL (ft bls) 10 measured Initial Annulus WL (ft bls) 10 measured 10 0.3304 m urge Volume (gallons) $1 0.2301$ g/ft \times 233 ft (interval) = 54 gallons $2 0.3623$ g/ft \times 235 ft (interval) = 72 gallons TOTAL PURGE VOLUME (one) = 72 gallons Pump Method Reverse Air Airline Length 200 feet Discharge Rate (gpm) 22 gpm Pump Time / Volume 3 minutes X THREE = 10 minutes Collection Method: 30 fface Discharge or Wireline Bailer or Nested Bailer comments: Borrowed YSI 556 to take duplicate readings. Readings below are recorded as YSI 63/YSI 556 however the pH probe on the YSI 556 is out of calib. (see daily log). de: N0=0.2301 ga/ft; HW=0.6528 ga/ft; open hole(N0)=0.3623 ga/ft est Information 10 10 10 10 22 22.922 10 $7.667.2217.10$ $407.04/22$ $22.3/22.10$ $7.667.2217.10$ $407.04/22$ $22.3/22.10$ $7.837.3917.11$ $407.04/24$ $22.3/22.10$ $7.837.3917.12$ $414.3/426$ $22.3/22.09$ $7.89/7.31Start Purge 16.26End Purge 17.30Sample Time 17.2017.20$ $414.3/426$ $22.3/22.09$ $7.89/7.3117.20$ $414.3/426$ $22.3/22.09$ $7.89/7.3117.20$ $114.40/26$ $12.3/22.09$ $7.89/7.3117.20$ $114.40/26$ $12.3/22.09$ $7.89/7.3117.20$ $114.3/426$ $12.3/22.09$ $7.89/7.3117.20$ $114.3/426$ $12.3/22.09$ $7.89/7.3117.20$ $114.40/26$ $12.3/22.09$ $7.89/7.3117.20$ $114.3/426$ $12.3/22.09$ $7.89/7.3117.20$ $114.3/426$ $12.3/22.09$ $7.89/7.3117.20$ $114.3/426$ $12.3/22.09$ $7.89/7.3117.20$ $114.3/426$ $12.3/22.09$ $7.89/7.3117.20$ $114.3/426$ $12.3/22.09$ $7.89/7.3117.20$ $114.3/426$ $11.3/426$		
Casing (HW) Diameter (in.) 4 Initial Test Interval WL (ft bis) not measured initial Annulus WL (ft bis) not measured initial Annulus WL (ft bis) not measured initial Annulus WL (ft bis) 10^{-10} measured in the measured initial Annulus WL (ft bis) 10^{-10} measured in the measured initial Annulus WL (ft bis) 10^{-10} measured in the measured initial Annulus WL (ft bis) 10^{-10} minutes Collection Method (Sufface Discharge Not Volume (Interval) = 10^{-10} minutes Collection Method: (Sufface Discharge Not Volume (Sufface Discharge Not Volume (Ft bis) measured initial Start Purge (Signarge Not Volume (Signarge Purge Pur		
Hole Diameter (in.) NQ (2 %) Initial Annulus WL (ft bls) not measured out the service of the service		
det: 1ft = 0.3048 m turge Volume (gallons) 1 0.2301 g/ft X 233 ft (interval) = 54 gallons 2 0.3623 g/ft X 233 ft (interval) = 19 gallons 2 0.3623 g/ft X 233 ft (interval) = 19 gallons TOTAL PURGE VOLUME (one) 72 gallons TOTAL PURGE VOLUME (one) 72 gallons Pump Method Reverse Air Airine Length 200 feet Discharge Rate (gpm) 22 gpm Pump Time / Volume 3 minutes X THREE = 10 minutes Collection Method: Sufface Discharge Por Wireline Bailer or Nested Bailer Collection Method: Sufface Discharge Por Wireline Bailer or Nested Bailer Othor Method: Sufface Discharge Por Wireline Bailer or Nested Bailer Othorwed VSI 556 to take duplicate readings. Readings below are recorded as YSI 63/YSI 556/to take duplicate readings. Readings below are recorded as Time Sp. Cond. Temp. pH <td></td> <td></td>		
urge Volume (gallons) 1 0.2301 g/ft X 152 ft (interval) = 54 gallons 3 gallons 1 0.2301 g/ft X 152 ft (interval) = 19 gallons 3 gallons 1 0.2301 g/ft X 152 ft (interval) = 12 0 gallons 1 0.3623 g/ft X 152 ft (interval) = 12 0 gallons 1 0 0.3623 g/ft X 152 ft (interval) = 12 0 gallons 1 0 0.3623 g/ft X 152 ft (interval) = 12 0 gallons 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hole Diameter (in.) NQ (2 ³ /8)	Initial Annulus WL (ft bls) not measured
$\frac{1}{2} \underbrace{0.2301}{0.3623} g/ft \times \underbrace{233}{52} ft (interval) = \underbrace{54}{19} gallons \\ gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ \hline Total PURG Reverse Air \\ Airline Length \underbrace{220}{2} gpm \\ Pump Time / Volume \underbrace{3} minutes X THREE = \underbrace{10}_{minutes} \\ Collection Method: \underbrace{307}_{face D ischarge or Wireline Bailer or Nested Bailer \\ Collection Method: \underbrace{307}_{face D ischarge or Wireline Bailer or Nested Bailer \\ Collection Method: \underbrace{307}_{S156 however the pH probe on the YS1556 is out of calib. (see daily log). \\ ote: N0=0.2301 gal/ft: HW=0.6528 gal/ft: open hole(NQ)=0.3623 gal/ft \\ \hline eet Information \\ \hline Water Quality During Purge \\ \hline Time & Sp. Cond. Temp. pH \\ \hline 16:45 & 399.6i/422 & 22.8i/22.20 & 7.15/7.35 \\ \hline 16:58 & 414.7i/426 & 22.2i/22.10 & 7.8677.39 \\ \hline 17:15 & 415.0i/426 & 22.4i/22.08 & 7.907.41 \\ \hline 17:20 & 414.3i/426 & 22.3i/22.09 & 7.897.39 \\ \hline 17:15 & 415.0i/426 & 22.4i/22.08 & 7.907.41 \\ \hline 17:20 & 414.3i/426 & 22.3i/22.09 & 7.897.39 \\ \hline 17:15 & 415.0i/426 & 22.3i/22.09 & 7.897.39 \\ \hline Sp. Cond. (µS/cm) \\ \hline Temperature (°C) \\ pH (SU) & \hline 7.897.39 \\ \hline PH (SU) & \hline 7.897.39 \\ \hline H (SU) & \hline 18.00 \\ \hline \$	lote: 1ft = 0.3048 m	
$\frac{1}{2} \underbrace{0.2301}{0.3623} g/ft \times \underbrace{233}{52} ft (interval) = \underbrace{54}{19} gallons \\ gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ \hline TOTAL PURGE VOLUME (one) = \underbrace{72} gallons \\ \hline Total PURG Reverse Air \\ Airline Length \underbrace{220}{2} gpm \\ Pump Time / Volume \underbrace{3} minutes X THREE = \underbrace{10}_{minutes} \\ Collection Method: \underbrace{307}_{face D ischarge or Wireline Bailer or Nested Bailer \\ Collection Method: \underbrace{307}_{face D ischarge or Wireline Bailer or Nested Bailer \\ Collection Method: \underbrace{307}_{S156 however the pH probe on the YS1556 is out of calib. (see daily log). \\ ote: N0=0.2301 gal/ft: HW=0.6528 gal/ft: open hole(NQ)=0.3623 gal/ft \\ \hline eet Information \\ \hline Water Quality During Purge \\ \hline Time & Sp. Cond. Temp. pH \\ \hline 16:45 & 399.6i/422 & 22.8i/22.20 & 7.15/7.35 \\ \hline 16:58 & 414.7i/426 & 22.2i/22.10 & 7.8677.39 \\ \hline 17:15 & 415.0i/426 & 22.4i/22.08 & 7.907.41 \\ \hline 17:20 & 414.3i/426 & 22.3i/22.09 & 7.897.39 \\ \hline 17:15 & 415.0i/426 & 22.4i/22.08 & 7.907.41 \\ \hline 17:20 & 414.3i/426 & 22.3i/22.09 & 7.897.39 \\ \hline 17:15 & 415.0i/426 & 22.3i/22.09 & 7.897.39 \\ \hline Sp. Cond. (µS/cm) \\ \hline Temperature (°C) \\ pH (SU) & \hline 7.897.39 \\ \hline PH (SU) & \hline 7.897.39 \\ \hline H (SU) & \hline 18.00 \\ \hline \$	Purae Volume (gallons)	
2 0.3623 g/ft X 52 ft (interval) = 19 gallons TOTAL PURGE VOLUME (one) Pump Method Reverse Air Airline Length 200 feet Discharge Rate (gpm) 22 gpm Pump Time / Volume 3 minutes X THREE = 10 minutes Collection Method: Sufface Discharge or Wireline Bailer or Nested Bailer Sufface Discharge or Wireline Bailer or Nested Bailer Sprowed YSI 556 to take duplicate readings. Readings below are recorded as YSI 63/YSI 556 however the pH probe on the YSI 556 is out of calib. (see daily log). otre: N0=0.2301 gal/ft: HW=0.6528 gal/ft: open hole(NQ)=0.3623 gal/ft est Information Water Quality During Purge 16:64 414.7/426 22.2/22.10 7.66/7.22 17:10 407.0/427 22.3/22.10 7.83/7.39 Start Purge 16:26 End Purge 17:30 Sample Time 17:20 Sample Time 17:20 Sp. Cond. (µS/cm) Multimeter Sp. Cond. (µS/cm) Time Sp. Cond. (µS/cm) Chloride (mg/l)		ft (interval) = 54 gallons
ToTAL PURGE VOLUME (one) = 72 gallons Pump Method Reverse Air Airline Length 200 feet Discharge Rate (gpm) 22 gpm Pump Time / Volume 3 minutes X THREE = 10 minutes Collection Method: Surface Discharge or Wireline Bailer or Nested Bailer minutes Collection Method: Surface Discharge or Wireline Bailer or Nested Bailer minutes Order NO=0.2301 gal/t: HW=0.6528 gal/tl: open hole(NQ)=0.3623 gal/tl minutes est Information Mater Quality During Purge 16:45 399.6/429 22.8/22.00 7.15/7.35 16:58 414.7/426 22.2/22.10 7.86/7.22 17:105 4116.0/426 22.2/22.10 7.86/7.23 17:105 4116.0/426 22.2/22.10 7.86/7.23 17:105 4116.0/426 22.3/22.09 7.89/7.39 17:105 4116.0/426 22.3/22.09 7.89/7.39 17:105 4114.3/426 22.3/22.09 7.89/7.39 17:105 4114.3/426 22.3/22.09 Sample Time 17:20 Sample Time 17:20 <td></td> <td></td>		
Pump Method Reverse Air Airline Length 200 feet Discharge Rate (gpm) 22 gpm Pump Time / Volume 3 minutes X THREE 1 0 minutes Collection Method: Sufface Discharge or Wireline Bailer or Nested Bailer Somments: Borrowed YSI 556 to take duplicate readings. Readings below are recorded as YSI 63/YSI 556 hovewer the pH probe on the YSI 556 is out of calib. (see daily log). ote: NQ=0.2301 gal/t; HW=0.6528 gal/t; open hole(NQ)=0.3623 gal/t Time Sp. Cond. Temp. pH 16:45 399.6/429 22.8/22.20 7.15/7.35 16:58 414.7/426 22.2/22.10 7.66/7.22 17:05 4114.0/426 22.2/22.10 7.68/7.39 17:15 4115.0/426 22.2/22.10 7.83/7.39 17:15 4115.0/426 22.4/22.08 7.90/7.41 17:20 4114.3/426 22.3/22.09 7.89/7.39 17:15 4115.0/426 22.4/22.08 7.90/7.41 17:20 4114.3/426 22.3/22.09 7.89/7.39 17:15 4115.0/426 22.4/22.08 7.90/7.41 17:20 4114.3/426 22.3/22.09 7.89/7.39 17:15 4115.0/426 22.3/22.09 7.89/7.39 17:16 4000 for the form the fo	Ű	· · · · · · · · · · · · · · · · · · ·
Airline Length 200 feet Discharge Rate (gpm) 22 gpm Pump Time / Volume 3 minutes X THREE = 10 minutes Collection Method: <		
Discharge Rate (gpm) 22 gpm Pump Time / Volume 3 minutes X THREE = 10 minutes Collection Method: < <u>Gurface Discharg</u> o or Wireline Bailer or Nested Bailer comments: Borrowed YSI 556 to take duplicate readings. Readings below are recorded as YSI 63/YSI 556 however the pH probe on the YSI 556 is out of calib. (see daily log). ote: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft est Information Water Quality During Purge Time Sp. Cond. Temp. pH 16:45 399.6/429 22.8/22.20 7.15/7.35 16:58 4114.7/426 22.2/22.10 7.66/7.22 17:05 414.0/426 22.2/22.10 7.68/7.39 17:15 415.0/426 22.2/22.10 7.83/7.39 17:15 415.0/426 22.3/22.09 7.89/7.39 17:10 407.0/427 22.3/22.09 7.89/7.39 17:10 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 Multimeter Sp. Cond. (µS/cm) 414.3/426 22.3/22.09 pH (SU) 7.89/7.39 PH (SU) 7.89/7.39 Chloride (mg/l) 8.0 Sulfate (mg/l) 4. 8.00		
Pump Time / Volume 3 minutes X THREE = 10 minutes Collection Method: Stifface Discharge>or Wireline Bailer or Nested Bailer State Discharge>or Wireline Bailer or Nested Bailer Somments: Borrowed YSI 556 to take duplicate readings. Readings below are recorded as YSI 63/YSI 556 however the pH probe on the YSI 556 is out of calib. (see daily log). ote: NQ=0.2301 gal/tt HW=0.6528 gal/tt: open hole(NQ)=0.3623 gal/tt Eest Information Eest Information Water Quality During Purge Time Sp. Cond. Temp. pH 16:45 399.6/429 22.8/22.20 7.15/7.35 Start Purge 16:26 17:105 414.0/426 22.2/22.10 7.68/7.39 Start Purge 16:26 17:10 407.0/427 22.3/22.10 7.83/7.39 Sample Time 17:20 17:12 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 Sp. Cond. (µS/cm) 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 Sp. Cond. (µS/cm) 414.3/426 Chloride (mg/l) 8.0 4 4 4 4 4<		
Collection Method: Sufface Discharge or Wireline Bailer or Nested Bailer for method: Sufface Discharge or Wireline Bailer or Nested Bailer for Method: Sufface Discharge or the PH probe on the YSI 556 is out of calib. (see daily log). de: NQ=0.2301 gal/ft: HW=0.6528 gal/ft: open hole(NQ)=0.3623 gal/ft Set NQ=0.2301 gal/ft: HW=0.6528 gal/ft: open hole(NQ)=0.3623 gal/ft Time Sp. Cond. Temp. pH 16:45 399.6/429 22.8/22.20 7.15/7.35 16:58 414.7/426 22.2/22.10 7.68/7.22 17:10 407.0/427 22.3/22.00 7.89/7.39 17:15 415.0/426 22.4/22.08 7.90/7.41 17:20 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 Multimeter Sp. Cond. (µS/cm) Temperature (°C) 22.3/22.09 Chloride (mg/l) 8.0 17:10 4014.3/426 23.3/22.09 PH (SU) 4.4		
Borrowed YSI 556 to take duplicate readings. Readings below are recorded as YSI 63/YSI 556 however the pH probe on the YSI 556 is out of calib. (see daily log). ote: NQ=0.2301 gal/t; HW=0.6528 gal/t; open hole(NQ)=0.3623 gal/t Set Information Water Quality During Purge Time Sp. Cond. Temp. pH 16:58 414.7/426 22.8/22.20 7.15/7.35 Start Purge 16:26 17:10 407.0/427 22.3/22.10 7.66/7.22 Tr.877.20 Start Purge 16:26 17:15 415.0/426 22.3/22.09 7.89/7.39 Sample Time 17:20 17:20 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 Sp. Cond. (µS/cm) 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 Sp. Cond. (µS/cm) 414.3/426 22.3/22.09 7.89/7.39 Photometer Sp. Cond. (µS/cm) 414.3/426 22.3/22.09 Chloride (mg/l) 8.0 Yet (SU) 7.89/7.39 PH (SU) 8.00 4 4		
YSI 63/YSI 556 however the pH probe on the YSI 556 is out of calib. (see daily log). ote: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft est Information Water Quality During Purge Time Sp. Cond. Temp. pH 16:45 399.6/429 22.8/22.20 7.157.35 16:58 414.7/426 22.2/22.10 7.667.22 17:10 407.0/427 22.3/22.10 7.83/7.39 17:15 415.0/426 22.3/22.09 7.89/7.39 17:20 414.3/426 22.3/22.09 7.89/7.39 17:20 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 17:20 Multimeter Photometer Sp. Cond. (µS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 4 9H (SU) 7.89/7.39 PH (SU) 8.00 0 0		
de: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft est Information Water Quality During Purge Time Sp. Cond. Temp. pH 16:45 399.6/429 22.8/22.20 7.15/7.35 16:58 414.7/426 22.2/22.10 7.66/7.22 17:05 414.0/426 22.2/22.13 7.78/7.20 17:10 407.0/427 22.3/22.09 7.89/7.39 17:15 415.0/426 22.3/22.09 7.89/7.39 17:20 414.3/426 22.3/22.09 7.89/7.39 Multimeter Photometer Sp. Cond. (µS/cm) Temperature (°C) 22.3/22.09 Chloride (mg/l) 8.0 Sulfate (mg/l) 4.0 4.0 4.0 17:20 7.89/7.39 PH (SU) 8.00 0		
est Information Water Quality During Purge Time Sp. Cond. Temp. pH 16:45 399.6/429 22.8/22.20 7.15/7.35 16:58 414.7/426 22.2/22.10 7.66/7.22 17:10 407.0/427 22.3/22.10 7.83/7.39 17:15 415.0/426 22.4/22.08 7.90/7.41 17:20 414.3/426 22.3/22.09 7.89/7.39 17:10 407.0/427 22.3/22.09 7.89/7.39 17:10 414.3/426 22.3/22.09 7.89/7.39 Multimeter Photometer Sp. Cond. (µS/cm) 414.3/426 Sulfate (mg/l) 8.0 Temperature (°C) 7.89/7.39 PH (SU) 8.00 4.0		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	lote: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0	0.3623 gal/ft
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	est Information	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Water Quality During Pur	ge
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
16:58 414.7/426 22.2/22.10 7.66/7.22 17:05 414.0/426 22.2/22.13 7.78/7.20 17:10 407.0/427 22.3/22.10 7.83/7.39 17:15 415.0/426 22.4/22.08 7.90/7.41 17:20 414.3/426 22.3/22.09 7.89/7.39 17:10 407.0/427 22.3/22.09 7.89/7.39 17:10 414.3/426 22.3/22.09 7.89/7.39 17:20 414.3/426 22.3/22.09 7.89/7.39 Sp. Cond. (µS/cm) 414.3/426 Chloride (mg/l) 17:mperature (°C) 22.3/22.09 Sulfate (mg/l) 9H (SU) 7.89/7.39 PH (SU)		
17:05 414.0/426 22.2/22.13 7.78/7.20 17:10 407.0/427 22.3/22.10 7.83/7.39 17:15 415.0/426 22.4/22.08 7.90/7.41 17:20 414.3/426 22.3/22.09 7.89/7.39 Image: Second Sec		7.00/7.00
17:10 407.0/427 22.3/22.10 7.83/7.39 End Purge 17:30 17:15 415.0/426 22.4/22.08 7.90/7.41 Sample Time 17:20 17:20 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 17:10 17:20 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 17:20 414.3/426 17:20 17:20 17:20 17:20 17:20 414.3/426 17:20 17:20 17:20 Multimeter Photometer 17:20 17:20 17:20 414.3/426 17:20 17:20 17:20 414.3/426 17:20 17:20 17:20 414.3/426 17:20 17:20 17:20 114.3/426 10:21 10:21 17:20 114.3/426 10:21 10:21 17:20 114.3/426 10:21 10:21 17:20 114.3/426 10:21 10:21 17:20 114.3/426 10:21 10:21 17:20 114.3/426 10:21 10:21 17:20 114.3/426		
17:15 415.0/426 22.4/22.08 7.90/7.41 17:20 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 How Holes 17:20 How How Holes		
17:20 414.3/426 22.3/22.09 7.89/7.39 Sample Time 17:20 Sample Time 17:20 17:20 17:20 Image: Sample Time 17:20 17:20 Image: Sample Time 17:20 Image: Sample Time <td< td=""><td></td><td></td></td<>		
Multimeter Photometer Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00	17.20 414.3/420 22.3/22.03	<u>11.03/1.03</u> Odnipie Hine <u>11.20</u>
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		+
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		+
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		+
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		+
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		+
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00	<u>├</u>	+
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00	<u>├</u>	+
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		
Sp. Cond. (μS/cm) 414.3/426 Chloride (mg/l) 8.0 Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		
Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00	Multimeter	Photometer
Temperature (°C) 22.3/22.09 Sulfate (mg/l) 4 pH (SU) 7.89/7.39 pH (SU) 8.00		Chloride (mg/l) 8.0
pH (SU) 7.89/7.39 pH (SU) 8.00		
\sim		
\sim		
amples Sent to District's Laboratory for Standard Complete Analysis? (Y) or N	amples Sent to District's Laboratory for Standard	Complete Analysis? (Y) or N

Figure I-4. Field sheet for the groundwater quality sample collected between 233 and 285 feet below land surface (water quality sample 4) at the ROMP 132 well site in Marion County.

onoral Information				WQ No. 5
eneral Information	Ditab Diant	tion		Data: 7/20/2000
Wellsite: ROMP 132	- Blitch Planta	ation		Date: 7/29/2008
Well: Core Hole				Time: 10:55
SID# 709163			_ Performe	d by: <u>A. Janosik</u>
Well	Depth (ft bls)	360	Pac	ked Interval (ft-ft bls) 303-360
Casing (HW)	Depth (ft bls)	133	Pack	ed Interval (m-m bls) 92.3-109.
Casing (HW) Casing (HW) [Diameter (in.)	4	Initial Te	st Interval WL (ft bls) not measure
Hole E	Diameter (in.)	NQ (2 ³ /8)	Initia	al Annulus WL (ft bls) not measure
te: 1ft = 0.3048 m				
irge Volume (gallons)				
1 0.2301	g/ft X	303	ft (interval)	= 70 gallons
2 0.3623	g/ft X	57	ft (interval)	
				ganono
Pump Method				
Airline Length	240	feet		
Discharge Rate (gpm)	26	gpm	TUDEE	
Pump Time / Volume		minutes X		11 minutes
				or Nested Bailer
				lings below are recorded as
YSI 63/YSI 5	556 however	the pH prob	e on the YSI 5	56 is out of calibration
te: NQ=0.2301 gal/ft; HW=	0.6528 gal/ft; oj	pen hole(NQ)=	0.3623 gal/ft	
est Information				
1	Water Quality	During Pur	ae	
Time	Sp. Cond.		pH	
10:25	406.8/427			
10:35	412.1/426			Otort During 10:00
10:45	413.3/425	22.5/22.17		Start Purge <u>10:00</u>
10:55	411.7/426	22.5/22.17		End Purge 10:55
10.00	11117/120	22.0/22.10	0.00,1.00	
				Sample Time 10:55
				<u> </u>
	<u> </u>			
	1			
	Multim			Photometer
Sp. Cond. (µS/cm)			Chloride (
Sp. Cond. (µS/cm) Temperature (°C)	411.7/-	426	Chloride (Sulfate (mg/l) 7.3
Temperature (°C)	411.7/- 22.5/2	426 2.13	Sulfate (mg/l) 7.3 mg/l) 5
	411.7/- 22.5/2	426 2.13	Sulfate (mg/l) 7.3 mg/l) 5
Temperature (°C)	411.7/- 22.5/2	426 2.13	Sulfate (mg/l) 7.3 mg/l) 5

Figure I-5. Field sheet for the groundwater quality sample collected between 303 and 360 feet below land surface (water quality sample 5) at the ROMP 132 well site in Marion County.

General Information Wellsite: ROMP 132 - Blitch Plantation Date: 8/6/2008 Well: Core Hole Time: 9:35 SID# 709163 Performed by: A. Janosik Well Depth (ft bls) 440 Casing (HW) Depth (ft bls) 133 Packed Interval (ft-ft bls) 381-440 Casing (HW) Diameter (in.) 4 Initial Test Interval WL (ft bls) not measured
Well: Core Hole Time: 9:35 SID# 709163 Performed by: A. Janosik Well Depth (ft bls) 440 Packed Interval (ft-ft bls) 381-440 Casing (HW) Depth (ft bls) 133 Packed Interval (m-m bls) 116.1-134.1
SID# 709163 Performed by: A. Janosik Well Depth (ft bls) 440 Packed Interval (ft-ft bls) 381-440 Casing (HW) Depth (ft bls) 133 Packed Interval (m-m bls) 116.1-134.1
Well Depth (ft bls)440Packed Interval (ft-ft bls)381-440Casing (HW) Depth (ft bls)133Packed Interval (m-m bls)116.1-134.1
Casing (HW) Depth (ft bls) 133 Packed Interval (m-m bls) 116.1-134.
Hole Diameter (in.) NQ (2 ³ /8) Initial Annulus WL (ft bls) not measured
Note: 1ft = 0.3048 m
Purge Volume (gallons)10.2301g/ftX381ft (interval)=88gallons20.3623g/ftX59ft (interval)=21gallonsTOTAL PURGE VOLUME (one) =109gallons
Pump Method Reverse Air Airline Length 240 feet Discharge Rate (gpm) 25 gpm Pump Time / Volume 4 minutes X THREE = 13 Collection Method: Surface Discharge or Wireline Bailer or Nested Bailer Comments: Borrowed YSI 556 to take duplicate readings. Readings below are recorded as YSI 63/YSI 556 however the pH probe on the YSI 556 is out of calibration
Note: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft
Test Information
Water Quality During Purge
Time Sp. Cond. Temp. pH
9:05 411.6/427 22.6/22.28 7.84/7.56
9:12 414.9/427 22.2/22.01 7.90/7.63 Start Purge 8:10
9:30 413.5/426 22.2/22.07 8.07/7.74
9:35 413.7/426 22.2/22.02 8.12/7.94 End Purge 9:45
Sample Time <u>9:35</u>
Multimeter Photometer
Sp. Cond. (μS/cm) 413.7/426 Chloride (mg/l) 7.1
Temperature (°C) 22.2/22.02 Sulfate (mg/l) 7
pH (SU) 8.12/7.94 pH (SU) 8.05

Figure I-6. Field sheet for the groundwater quality sample collected between 381 and 440 feet below land surface (water quality sample 6) at the ROMP 132 well site in Marion County.

eneral Information					
Wellsite: ROMP 132	- Blitch Planta	ation		Date: 8/14/2008	
Well: Core Hole			. 1	Time: 10:50	
SID# 709163	3			ed by: A. Janosik	
				·	
Well	Depth (ft bls)	555	Pac	cked Interval (ft-ft bl	s) 486-555
Casing (HW)	Depth (ft bls)	133	Pack	ed Interval (m-m bl	s) 147.8-169
Casing (HW) I	Diameter (in.)	4	Initial Te	est Interval WL (ft ble	s) not measure
Hole I	Diameter (in.)	NQ (2 ³ /8)	Initia	al Annulus WL (ft bl	s) not measure
e: 1ft = 0.3048 m					
rge Volum <u>e (gallons)</u>			_		
1 0.2301	g/ft X	486	ft (interval)	= 112	gallons
2 0.3623	g/ft X	69	ft (interval)	= 25	gallons
	TO	AL PURGE	VOLUME (o	ne) = 137	gallons
Pump Method					
Airline Length	240	feet			
Discharge Rate (gpm)	21	gpm			
Pump Time / Volume		minutes X T	HREE =	20	minutes
Collection Method	Surface Dis	charge or W	vireline Baile	r or Nested Bailer	
mments: Readings b					e on the YSI
556 is out o	f calibration: S	SULFUR SME	ELL		
		SULFUR SME pen hole(NQ)=0.			
556 is out o te: NQ=0.2301 gal/ft; HW=					
e: NQ=0.2301 gal/ft; HW=					
e: NQ=0.2301 gal/ft; HW= st Information	-0.6528 gal/ft; op	oen hole(NQ)=0.	3623 gal/ft	1	
e: NQ=0.2301 gal/ft; HW= st Information	0.6528 gal/ft; op Water Quality	pen hole(NQ)=0.	3623 gal/ft e]	
e: NQ=0.2301 gal/ft; HW= st Information Time	Water Quality Sp. Cond.	v During Purg	3623 gal/ft e pH		
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25	0.6528 gal/ft; op Water Quality Sp. Cond. 449.0/466	v During Purg 7 During Purg Temp. 22.2/21.82	3623 gal/ft e pH 7.36/7.86		0.02
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35	Water Quality Sp. Cond. 449.0/466 452.2/466	open hole(NQ)=0. / During Purg Temp. 22.2/21.82 21.8/21.75	3623 gal/ft e 7.36/7.86 7.60/7.73	Start Purge -	9:02
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	-	
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35	Water Quality Sp. Cond. 449.0/466 452.2/466	open hole(NQ)=0. / During Purg Temp. 22.2/21.82 21.8/21.75	3623 gal/ft e 7.36/7.86 7.60/7.73	Start Purge _ End Purge _	
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	-	11:00
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	End Purge	11:00
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	End Purge	11:00
te: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	End Purge	11:00
te: NQ=0.2301 gal/ft; HW=	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	End Purge	11:00
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	End Purge	11:00
te: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	End Purge	11:00
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465	v During Purg Temp. 22.2/21.82 21.8/21.75 21.8/21.73	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	End Purge	11:00
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40	0.6528 gal/ft; op Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465 450.4/465	22.2/21.82 21.8/21.75 21.8/21.73 21.8/21.74	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77	End Purge _ Sample Time _	<u>11:00</u> 10:50
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40 10:50	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465 450.4/465	eter	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77 7.95/7.74	End Purge _ Sample Time _	<u>11:00</u> 10:50
e: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40 10:50 	Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465 450.4/465	eter 465	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77 7.95/7.74	End Purge _ Sample Time _ Photome mg/I)	<u>11:00</u> 10:50
ie: NQ=0.2301 gal/ft; HW= st Information Time 10:25 10:35 10:40 10:50	0.6528 gal/ft; op Water Quality Sp. Cond. 449.0/466 452.2/466 451.1/465 450.4/465	eter 465 1.74	3623 gal/ft e 7.36/7.86 7.60/7.73 7.80/7.77 7.95/7.74 Chloride (Sulfate (End Purge _ Sample Time _ Photome mg/I)	<u>11:00</u> 10:50

Figure I-7. Field sheet for the groundwater quality sample collected between 486 and 555 feet below land surface (water quality sample 7) at the ROMP 132 well site in Marion County.

				WQ No.	8
General Information					
Wellsite: ROMP 132	 Blitch Planta 	ation		Date: 8/2/2008	
Well: Core Hole				Time: <u>17:20</u>	
SID# 709163			Performe	d by: A. Janosik	
Casing (HW) Casing (HW) I	• • •	133 4	Pack Initial Te	ked Interval (ft-ft bls) ed Interval (m-m bls) st Interval WL (ft bls) al Annulus WL (ft bls)	178.9-192.0 not measured
Purge Volume (gallons) 1 0.2301 2 0.3623	g/ft X g/ft X TO T	587 48 FAL PURGE	ft (interval) ft (interval) VOLUME (or	= <u>135</u> = <u>17</u> ne) = <u>152</u>	gallons gallons gallons
Comments: Readings b	240 25 6 Surface Dis elow are reco alibration. NO SM	rded as YSI 6 //ELL. Depth of 1	/ireline Bailer 3/YSI 556 ho 78.9-193.5 m a	18 r or Nested Bailer owever the pH probe ccidentally recorded on sh	
Test Information					
	Water Quality	During Purge	Э		
Time	Sp. Cond.	Temp.	pН		
16:50	406.9/426	23.2/22.19	7.42/7.69		
17:00	403.9/423	22.5/22.13	7.80/7.61	Start Purge	15:49
17:10	409.9/423	22.2/22.04	7.91/7.68		
17:20	409.2/422	22.2/22.09	7.98/7.64	End Purge	17:30
				Sample Time	17:20
Sp. Cond. (μS/cm) Temperature (°C) pH (SU)	22.2/22	426 2.09	Chloride (Sulfate (pH		r
Samples Sent to District					

Figure I-8. Field sheet for the groundwater quality sample collected between 587 and 630 feet below land surface (water quality sample 8) at the ROMP 132 well site in Marion County.

General Information				
Wellsite: ROMP 132	- Blitch Planta	ation	D	ate: 9/9/2008
Well: Core Hole			T	ime: 13:17
SID# 709163	3		Performed	by: A. Janosik
			-	
Well	Depth (ft bls)	710	Pack	ked Interval (ft-ft bls) 661-710
Casing (HW)				ed Interval (m-m bls) 201.5-216.
Casing (HW) I				t Interval WL (ft bls) not measure
	Diameter (in.)			Annulus WL (ft bls) not measure
ote: 1ft = 0.3048 m			_	
urge Volume (gallons)				
	g/ft X	661	ft (interval)	= 152 gallons
2 0.3623	g/ft X	49	ft (interval)	
			VOLUME (on	
				ganorio
Pump Method				
Airline Length		feet		
Discharge Rate (gpm)		gpm		
Pump Time / Volume		minutes X		51 minutes
Collection Method				or Nested Bailer
omments: Meter = YS	63. FAINT S	ULFUR SME	LL	
ote: NQ=0.2301 gal/ft; HW=	=0.6528 gal/ft; op	pen hole(NQ)=0	.3623 gal/ft	
act Information				
	Water Quality	During Pure	je	
	Water Quality Sp. Cond.	During Purg	je pH	
Time	Sp. Cond.	Temp.	рН	Start Purge11:35
Time 12:17	Sp. Cond. 432.2	Temp. 22.7	рН 7.90	Start Purge <u>11:35</u>
Time 12:17 12:25	Sp. Cond. 432.2 431.9 432.5	Temp. 22.7 22.5	pH 7.90 8.03 8.13	-
Time 12:17 12:25 12:35 12:47	Sp. Cond. 432.2 431.9 432.5 428.3	Temp. 22.7 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22	Start Purge <u>11:35</u> End Purge <u>13:25</u>
Time 12:17 12:25 12:35	Sp. Cond. 432.2 431.9 432.5 428.3 418.7	Temp. 22.7 22.5 22.5	pH 7.90 8.03 8.13	-
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57	Sp. Cond. 432.2 431.9 432.5 428.3 418.7	Temp. 22.7 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30	End Purge 13:25
Time 12:17 12:25 12:35 12:47 12:57 13:07 13:17	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0 433.0	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5	pH 7.90 8.03 8.13 8.22 8.27 8.30 8.27	End Purge <u>13:25</u> Sample Time <u>13:17</u> Photometer
Time 12:17 12:25 12:35 12:47 12:57 13:07 13:17 	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0 433.0 Multim 433.1	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5 22.	pH 7.90 8.03 8.13 8.22 8.27 8.30 8.27	End Purge <u>13:25</u> Sample Time <u>13:17</u> Photometer
Time 12:17 12:25 12:35 12:47 12:57 13:07 13:17 Sp. Cond. (μS/cm) Temperature (°C)	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0 433.0 433.0 Multim 1 433.1 22.5	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5 22.	pH 7.90 8.03 8.13 8.22 8.27 8.30 8.27 	End Purge <u>13:25</u> Sample Time <u>13:17</u> Photometer ng/l) <u>5.5</u> ng/l) 7
Time 12:17 12:25 12:35 12:47 12:57 13:07 13:17 	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0 433.0 433.0 Multim 1 433.1 22.5	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5 22.	pH 7.90 8.03 8.13 8.22 8.27 8.30 8.27	End Purge <u>13:25</u> Sample Time <u>13:17</u> Photometer ng/l) <u>5.5</u> ng/l) 7
Time 12:17 12:25 12:35 12:47 12:57 13:07 13:17 Sp. Cond. (μS/cm) Temperature (°C)	Sp. Cond. 432.2 431.9 432.5 428.3 418.7 433.0 433.0 433.0 Multim 1 433.1 22.5	Temp. 22.7 22.5 22.5 22.5 22.5 22.5 22.5 22.	pH 7.90 8.03 8.13 8.22 8.27 8.30 8.27 	End Purge <u>13:25</u> Sample Time <u>13:17</u> Photometer ng/l) <u>5.5</u> ng/l) 7

Figure I-9. Field sheet for the groundwater quality sample collected between 661 and 710 feet below land surface (water quality sample 9) at the ROMP 132 well site in Marion County.

					WQ No.	
Seneral Informa						
Wellsite: RO		Blitch Planta	ation		ate: <u>9/15/2008</u>	
Well: Core					me: <u>14:00</u>	
SID#	709163			Performed	by: A. Janosik	
	g (HW) [g (HW) D	Depth (ft bls) Depth (ft bls) Diameter (in.) Diameter (in.)	133 4	Packee	ed Interval (ft-ft bls d Interval (m-m bls i Interval WL (ft bls Annulus WL (ft bls	 228.9-246. not measured
ote: 1ft = 0.3048 m						
	allons) .2301 .3623	g/ft X g/ft X TOT	751 59 FAL PURGE		= <u>173</u> = <u>21</u> e) = 194	gallons gallons gallons
Airline Discharge Rat Pump Time / Collection	e Length te (gpm) Volume Method:	12 16 Surface Dis	feet gpm minutes X 1		49 or Nested Bailer	minutes
omments: FAI	NI SULF	UR SMELL				
			pen hole(NQ)=0.	.3623 gal/ft		
comments: FAII	I/ft; HW=0		pen hole(NQ)=0.	.3623 gal/ft		
	I/ft; HW=0		pen hole(NQ)=0.	.3623 gal/ft		
ote: NQ=0.2301 ga	I/ft; HW=0 n	0.6528 gal/ft; op				
est Information	l/ft; HW=0 n V	0.6528 gal/ft; op Water Quality	v During Purg	je		
est Information	I/ft; HW=0 n	0.6528 gal/ft; op				
est Information	I/ft; HW=0 n V Time	0.6528 gal/ft; op Water Quality Sp. Cond.	/ During Purg Temp.	je pH	Start Purge	12:35
te: NQ=0.2301 ga	I/ft; HW=0 n V Time 13:15	0.6528 gal/ft; op Water Quality Sp. Cond. 459.7	v During Purg Temp. 22.5	је рН 7.57	Start Purge _	12:35
est Information	I/ft; HW=0 n V Time 13:15 13:25	0.6528 gal/ft; op Vater Quality Sp. Cond. 459.7 460.3	v During Purg Temp. 22.5 22.3	је рН 7.57 7.94	Start Purge _ End Purge _	
est Information	I/ft; HW=0 n V Time 13:15 13:25 13:35	D.6528 gal/ft; op Vater Quality Sp. Cond. 459.7 460.3 460.7	v During Purg Temp. 22.5 22.3 22.3	је рН 7.57 7.94 8.00	C C	13:45
te: NQ=0.2301 ga	I/ft; HW=0 n V Time 13:15 13:25 13:35	D.6528 gal/ft; op Vater Quality Sp. Cond. 459.7 460.3 460.7	v During Purg Temp. 22.5 22.3 22.3	је рН 7.57 7.94 8.00	End Purge _	13:45
est Information	I/ft; HW=0 n V Time 13:15 13:25 13:35	D.6528 gal/ft; op Vater Quality Sp. Cond. 459.7 460.3 460.7	v During Purg Temp. 22.5 22.3 22.3	је рН 7.57 7.94 8.00	End Purge _	13:45
ote: NQ=0.2301 ga	I/ft; HW=0 n V Time 13:15 13:25 13:35	D.6528 gal/ft; op Water Quality Sp. Cond. 459.7 460.3 460.7 460.7	/ During Purg Temp. 22.5 22.3 22.3 22.3	је рН 7.57 7.94 8.00	End Purge _ Sample Time _	<u>13:45</u> <u>14:00</u>
est Information	I/ft; HW=0 n 13:15 13:25 13:35 13:45	D.6528 gal/ft; op Vater Quality Sp. Cond. 459.7 460.3 460.7 460.7	v During Purg Temp. 22.5 22.3 22.3 22.3	pe pH 7.57 7.94 8.00 8.05	End Purge _ Sample Time _ Photomet	<u>13:45</u> <u>14:00</u>
Sp. Cond.	l/ft; HW=0 n V Time 13:15 13:25 13:35 13:45	D.6528 gal/ft; op Vater Quality Sp. Cond. 459.7 460.3 460.7 460.7	Ouring Purg Temp. 22.5 22.3 22.3 22.3 22.3 eter 7	pe pH 7.57 7.94 8.00 8.05 	End Purge _ Sample Time _ Photomet g/l)7.2	<u>13:45</u> <u>14:00</u>
Sp. Cond. Temperat	l/ft; HW=0 n V Time 13:15 13:25 13:35 13:45	D.6528 gal/ft; op Vater Quality Sp. Cond. 459.7 460.3 460.7 460.7 460.7	v During Purg Temp. 22.5 22.3 22.3 22.3 22.3 	pe pH 7.57 7.94 8.00 8.05	End Purge _ Sample Time _ g/l) 7.2 g/l) 6	<u>13:45</u> <u>14:00</u>

Figure I-10. Field sheet for the groundwater quality sample collected between 751 and 810 feet below land surface (water quality sample 10) at the ROMP 132 well site in Marion County.

eneral in	formation					
	: ROMP 132	 Blitch Planta 	ation		Date: 9/22/2008	
Well	: Core Hole				ime: 18:00	
SID#	# 709163			Performe	d by: <u>A. Janosik</u>	
		Depth (ft bls)	890	 Pac	ked Interval (ft-ft bls	s) 845-890
	Casing (HW)				ed Interval (m-m bls	
	Casing (HW)				st Interval WL (ft bls	<i>'</i>
		Diameter (in.)			I Annulus WL (ft bls	·
e: 1ft = 0.3						, <u> </u>
rge Volu	me (gallons)	_		_		
	1 0.2301	g/ft X	845	ft (interval)		gallons
2	2 0.3623	g/ft X	45	ft (interval)		gallons
		TOT	TAL PURGE	VOLUME (or	ne) = 211	gallons
	Pump Method					_
	Airline Length		feet			
-	ge Rate (gpm)		gpm		~-	-
	ime / Volume		minutes X		25	minutes
		Surface Dis	charge or V	Vireline Bailer	or Nested Bailer	
mments	: NO SMELL					
e: NQ=0.2	301 gal/ft; HW=	0.6528 gal/ft or	holo(N(1))=0			
	-	010020 ga#11, 0p		.3623 gai/π		
ot Inform	notion	0100 <u>2</u> 0 gaint, op		.3623 gai/π		
st Inforn	mation			.3623 gai/π		
st Inforn	Y	Water Quality	v During Purg	e		
st Inforn	Time	Water Quality Sp. Cond.	/ During Purg Temp.	e pH		
st Inform	Time 17:30	Water Quality Sp. Cond. 433.8	v During Purg Temp. 22.2	е рН 7.72		
st Inforr	Time 17:30 17:40	Water Quality Sp. Cond. 433.8 431.5	During Purg Temp. 22.2 22.1	e pH 7.72 7.83	Start Purge _	17:05
<u>st Inforr</u>	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	Start Purge _	
st Inforr	Time 17:30 17:40	Water Quality Sp. Cond. 433.8 431.5	During Purg Temp. 22.2 22.1	e pH 7.72 7.83	Start Purge _ End Purge _	
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	End Purge _	18:00
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92		18:00
<u>st Inforr</u>	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	End Purge _	18:00
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	End Purge _	18:00
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	End Purge _	18:00
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	End Purge _	18:00
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	End Purge _	18:00
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	End Purge _	18:00
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9	2 During Purg Temp. 22.2 22.1 22.1	e pH 7.72 7.83 7.92	End Purge _	18:00
st Inforr	Time 17:30 17:40 17:50	Water Quality Sp. Cond. 433.8 431.5 430.9 430.5	22.2 22.1 22.1 22.0	e pH 7.72 7.83 7.92	End Purge _ Sample Time _	18:00 18:00
	Time 17:30 17:40 17:50 18:00	Water Quality Sp. Cond. 433.8 431.5 430.9 430.5	v During Purg Temp. 22.2 22.1 22.1 22.0	e pH 7.72 7.83 7.92 7.93	End Purge _ Sample Time _ Photomet	18:00 18:00
Sp. C	Time 17:30 17:40 17:50 18:00	Water Quality Sp. Cond. 433.8 431.5 430.9 430.5	v During Purg Temp. 22.2 22.1 22.1 22.0 22.0 22.0 22.0 22.	e pH 7.72 7.83 7.92 7.93 	End Purge _ Sample Time _ Photomet ng/l)5.7	18:00 18:00
	Time 17:30 17:40 17:50 18:00	Water Quality Sp. Cond. 433.8 431.5 430.9 430.5	v During Purg Temp. 22.2 22.1 22.1 22.0 22.0 22.0 22.0 22.	e pH 7.72 7.83 7.92 7.93 	End Purge _ Sample Time _ Photomet ng/l)5.7	18:00 18:00

Figure I-11. Field sheet for the groundwater quality sample collected between 845 and 890 feet below land surface (water quality sample 11) at the ROMP 132 well site in Marion County.

				WQ No.	12
General Information					
Wellsite: ROMP 132 -	Blitch Planta	tion		ate: 9/29/2008	
Well: Core Hole				me: <u>16:35</u>	
SID# 709163			Performed	by: <u>A. Janosik</u>	
	Depth (ft bls)			ed Interval (ft-ft bls)	
Casing (HW)				d Interval (m-m bls)	
Casing (HW) D				t Interval WL (ft bls)	
	iameter (in.)	NQ (2 ³ /8)	Initial	Annulus WL (ft bls)	not measured
lote: 1ft = 0.3048 m					
Purge Volume (gallons)					
1 0.2301	g/ft X	906	ft (interval)	= 208	gallons
2 0.3623	g/ft X	69		= 25	gallons
		AL PURGE	VOLUME (one		gallons
				,	
Pump Method					_
Airline Length		feet			
Discharge Rate (gpm)		gpm			
Pump Time / Volume		minutes X		35	minutes
Collection Method:		charge or V	Vireline Bailer	or Nested Bailer	
Comments: SULFUR SN	IELL				
Note: NQ=0.2301 gal/ft; HW=0	1.6528 gal/ft; op	en hole(NQ)=0	.3623 gal/ft		
Test Information					
V	Vater Quality	During Pure	1e		
Time	Sp. Cond.	Temp.	pH		
15:55	438.2	22.3	7.43		
16:05	437.7	22.2	7.65	Start Purge	15:25
16:15	438.3	22.2	7.81	Start Purge _	
16:25	437.4	22.2	7.90	End Purge	16:35
16:35	438.4	22.1	7.91		10.00
10.00	-1001	22.1	7.01	Sample Time	16:35
					10.00
			↓		
			<u> </u>		
	Multime	eter		Photomete	er
Sp. Cond. (µS/cm)	438.4		Chlorida (
	22.1		Chloride (m	9,.,	
Temperature (°C)			Sulfate (m		
pH (SU)	7.91		pH (\$	SU) 8.05	
	Labor (
amples Sent to District's	Laboratory f	or Standard	Complete Anal	iysis?(Y) or N	

Figure I-12. Field sheet for the groundwater quality sample collected between 906 and 975 feet below land surface (water quality sample 12) at the ROMP 132 well site in Marion County.

Casing (HW) Depth (ft bls)133Packed Interval (m-m bls)299.0-318Casing (HW) Diameter (in.)4Initial Test Interval WL (ft bls)not measure	eneral Information						
SID# 709163 Performed by: A. Janosik Well Depth (ft bis) 1.045 Casing (HW) Depth (ft bis) 133 Casing (HW) Depth (ft bis) 133 Casing (HW) Depth (ft bis) 133 Packed Interval (ft-ft bis) 981-1.04 Initial Annulus WL (ft bis) not measure Initial Annulus WL (ft bis) not measure Initial Annulus WL (ft bis) 981-1.04 Packed Interval (ft-ft bis) 981-1.04 Initial Annulus WL (ft bis) not measure Interval WL (ft bis) of motomeasure Interval WL (ft bis) gallons gallons Pump Time / Volume Packed Interval (ft-ft bis) gallons Pump Time / Volume Sp. Cond. Temp. </th <th>Wellsite: ROMP 132</th> <th>- Blitch Planta</th> <th>tion</th> <th>D</th> <th>Date: 10/2/2008</th> <th></th>	Wellsite: ROMP 132	- Blitch Planta	tion	D	Date: 10/2/2008		
Well Depth (ft bls) 1.045 Packed Interval (ft-ft bls) 981-1.045 Casing (HW) Depth (ft bls) 133 Initial Test Interval WL (ft bls) 981-1.045 Casing (HW) Diameter (in.) 4 Initial Test Interval WL (ft bls) 101 101 Hole Diameter (in.) NQ (2*/s) Initial Annulus WL (ft bls) not measure Initial Test Interval (ft ft bls) not measure <td colspa<="" td=""><td>Well: Core Hole</td><td></td><td></td><td>T</td><td>ime: 12:55</td><td></td></td>	<td>Well: Core Hole</td> <td></td> <td></td> <td>T</td> <td>ime: 12:55</td> <td></td>	Well: Core Hole			T	ime: 12:55	
Casing (HW) Depth (ft bis) 133 Casing (HW) Diameter (in.) 4 Hole Diameter (in.) $NQ (2^{3}/a)$ Initial Test Interval WL (ft bis) not measure Initial Annulus WL (ft bis) not measure Initial An	SID# 709163			Performed	d by: A. Janosik		
Casing (HW) Depth (ft bis) 133 Casing (HW) Diameter (in.) 4 Hole Diameter (in.) $NQ (2^{3}/e)$ Initial Test Interval WL (ft bis) not measure Initial Annulus WL (ft bis) not measure Initial An							
Casing (HW) Diameter (in.) $\overline{\underline{NQ}(2^{-3}(b))}$ Initial Test Interval WL (ft bis) <u>not measure</u> Initial Annulus WL (ft bis) <u>not measure</u> Initial Annulus WL (ft bis) <u>not measure</u> Initial Annulus WL (ft bis) <u>not measure</u> is: Ift = 0.3048 m urge Volume (gallons) 1 0.2301 g/ft X <u>981</u> ft (interval) = <u>226</u> gallons 2 0.3623 g/ft X <u>981</u> ft (interval) = <u>238</u> gallons TOTAL PURGE VOLUME (one) = <u>249</u> gallons Pump Method Reverse Air Airline Length <u>300</u> feet Discharge Rate (gpm) <u>30</u> gpm Pump Time / Volume <u>8</u> minutes X THREE = <u>25</u> minutes Collection Method: <u>Curface Discharge or Wireline Bailer or Nested Bailer</u> Some the experimental state of the experimental s	Well	Depth (ft bls)		Pack	ked Interval (ft-ft bls) 981-1,045	
Hole Diameter (in.) $\overline{NQ} (2^{-3}/8)$ Initial Annulus WL (ft bis)not measure urge Volume (gallons) 1 0.2301 g/ft X 981 ft (interval) = 226 gallons 2 0.3623 g/ft X 981 ft (interval) = 223 gallons 2 0.3623 g/ft X 981 ft (interval) = 223 gallons TOTAL PURGE VOLUME (one) = 2249 gallons Pump Method Reverse Air Airline Length	Casing (HW)	Depth (ft bls)	133	Packe	ed Interval (m-m bls) 299.0-318	
te: If t = 0.3048 m trige Volume (gallons) 1 0.2301 g/ft X 981 ft (interval) = 226 gallons 2 0.3623 g/ft X 64 ft (interval) = 249 gallons TOTAL PURGE VOLUME (one) = 249 gallons Pump Method Reverse Air Airline Length 300 feet Discharge Rate (gpm) Pump Time / Volume 8 minutes X THREE = 25 minutes Collection Method: Surface Discharge> or Wireline Bailer or Nested Bailer mments: NO SMELL te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft Start Purge 11:35 HUItimeter Photometer Sp. Cond. (µS/cm) ft 446.0 Chloride (mg/l) 0 HUItimeter Photometer Chloride (mg/l) 0 HUItimeter Photometer Sp. Cond. (µS/cm) ft 446.0 Suffate (mg/l) 0 HUItimeter Photometer HUItimeter Photometer HUItimeter Photomete				Initial Tes	st Interval WL (ft bls) not measure	
Image Volume (gallons) $1 ext{ 0.2301 } 0.2301 ext{ g/ft X } 0/ft X \\ 0.3623 ext{ g/ft X } 0/ft X \\ 0/ft $	Hole [Diameter (in.)	NQ (2 ³ /8)	Initial	l Annulus WL (ft bls) not measure	
$\frac{1}{2} \underbrace{0.2301}_{0.3623} g/ft \times \underbrace{981}_{64} ft (interval) = \underbrace{226}_{23} gallons}_{gallons} \\ \frac{1}{2} \underbrace{0.3623}_{0.3623} g/ft \times \underbrace{64}_{64} ft (interval) = \underbrace{23}_{23} gallons}_{TOTAL PURGE VOLUME (one) = \underbrace{23}_{23} gallons}_{gallons} \\ \frac{1}{2} \underbrace{0.3623}_{0.3623} g/ft \times \underbrace{0}_{0.3623} g/ft \times \underbrace{0}_{249} gallons}_{gallons} \\ \frac{1}{2} \underbrace{0.3623}_{0.3623} g/ft \times \underbrace{0}_{249} gallons}_{gallons} \\ \frac{1}{2} \underbrace{0.3623}_{0.3623} g/ft \times \underbrace{0}_{0.3623} g/ft \times \underbrace{0}_{249} gallons}_{gallons} \\ \frac{1}{2} \underbrace{0.3623}_{0.3623} g/ft \times \underbrace{0}_{0.3623} g/ft \times \underbrace$	te: 1ft = 0.3048 m			-			
2 0.3623 g/ft X 64 ft (interval) = 23 gallons TOTAL PURGE VOLUME (one) = 249 gallons Pump Method Reverse Air Airline Length 300 feet Discharge Rate (gpm) 30 gpm Pump Time / Volume 8 minutes X THREE = 25 minutes Collection Method: <ur> Surface Discharge or Nested Bailer Minutes X THREE = 25 Collection Method: Surface Discharge or Nested Bailer minutes X THREE = 25 Collection Method: Wireline Bailer or Nested Bailer minutes SMELL te: NQ=0.2301 gal/ft: HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft Start Purge 11:35 12:25 437.8 21.9 7.51 12:35 446.2 22.0 7.71 Sample Time 12:55 Sample Time 12:55 Sample Time 12:55 Muttimeter Photometer <td col<="" td=""><td>urge Volum<u>e (gallons)</u></td><td>_</td><td></td><td>_</td><td></td><td></td></td></ur>	<td>urge Volum<u>e (gallons)</u></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td>	urge Volum <u>e (gallons)</u>	_		_		
TOTAL PURGE VOLUME (one) = 249 gallons Pump Method Reverse Air Airline Length 300 feet Discharge Rate (gpm) 30 gpm Pump Time / Volume B minutes X THREE = 25 minutes Collection Method: Surface Discharge>or Wireline Bailer or Nested Bailer Discharge Nate (gpm) Multimeter Collection Method: Start Purge 11:35 te: NQ=0.2301 gal/ft: HW=0.6528 gal/ft: open hole(NQ)=0.3623 gal/ft Start Purge 11:35 I12:25 437.8 12:25 437.8 12:25 437.8 12:25 446.2 12:25 446.0 12:20 7.80 Start Purge 13:05 Sample Time 12:55 Multimeter Multimeter Photometer Sp. Cond. (µS/cm) 446.0 22.0 Chloride (mg/l) 4.4 0 0	1 0.2301	g/ft X	981	ft (interval)	= 226	gallons	
Pump Method Reverse Air Airline Length 300 feet Discharge Rate (gpm) 30 gpm Pump Time / Volume 8 minutes X THREE = 25 Collection Method: Surface Discharge or Wireline Bailer or Nested Bailer minutes mments: NO SMELL Image: Second	2 0.3623	g/ft X	64	ft (interval)	= 23	gallons	
Airline Length 300 feet Discharge Rate (gpm) 30 gpm Pump Time / Volume 8 minutes X THREE = 25 Collection Method: Starface Discharge>or Wireline Bailer or Nested Bailer mments: NO SMELL te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft Start Purge 11:35 Start Purge 11:35 12:25 446.2 22.0 7.71 12:35 446.2 22.0 7.80 End Purge 13:05 Sample Time 12:55 Mutimeter Photometer Sp. Cond. (µS/cm) Mutimeter Photometer Sp. Cond. (µS/cm) A46.0 Colspan="2">Photometer Sp. Cond. (µS/cm) Mutimeter Photometer Sp. Cond. (µS/cm) A46.0		тот	AL PURGE	VOLUME (on	e) = 249	gallons	
Airline Length 300 feet Discharge Rate (gpm) 30 gpm Pump Time / Volume 8 minutes X THREE = 25 Collection Method: Surface Discharge>or Wireline Bailer or Nested Bailer mments: NO SMELL te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft Start Purge 12:25 437.8 21.9 12:25 446.7 21.9 12:25 446.7 21.9 12:25 446.0 22.0 12:55 446.0 22.0 Sample Time 12:55 Sample Time 12:55 Sample Time 12:55 Mutimeter Photometer Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) 446.0 22.0 Sulfate (mg/l) 0 22.0 Sulfate (mg/l)	Pump Method	Reverse Air					
Pump Time / Volume 8 minutes X THREE = 25 minutes Collection Method: Sufface Discharge or Wireline Bailer or Nested Bailer minutes Sufface Discharge or Wireline Bailer or Nested Bailer pmments: NO SMELL te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft stat Sufface Discharge or Nested Bailer te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft stat stat stat set Information Water Quality During Purge pH stat stat stat 12:25 437.8 21.9 7.51 stat stat stat 12:35 446.0 22.0 7.70 stat stat stat 12:45 446.0 22.0 7.80 Sample Time 12:55 Sample Time 12:55 Sample Time 12:55 446.0 22.0 7.80 Sample Time 12:55 Multimeter Multimeter Photometer Sample Time 12:55 Sample Time 12:55	Airline Length	300	feet			—	
Collection Method: Sufface Discharge or Wireline Bailer or Nested Bailer minute Signature minute Signature wireline Bailer or Nested Bailer minute Signature minute Signature wireline Bailer or Nested Bailer minutes Water Quality During Purge Time Sp. Cond. Temperature Temperature Start Purge 11:35 12:25 437.8 21.9 7.83 12:55 End Purge 13:05 Sample Time 12:55 Multimeter Photometer Multimeter Photometer Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) 0	• •••		0.	=		_	
Model Multimeter Photometer Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) 4.4 Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) 0	-			L		minutes	
te: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NQ)=0.3623 gal/ft est Information Water Quality During Purge Time Sp. Cond. Time Sp. Cond. 12:25 437.8 12:35 446.2 12:55 446.0 10 0		Surface Dis	charge or V	Vireline Bailer	or Nested Bailer		
Water Quality During Purge Time Sp. Cond. Temp. pH 12:25 437.8 21.9 7.51 12:35 446.2 22.0 7.71 12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 End Purge 13:05 Sample Time 12:55 Multimeter Photometer Sp. Cond. (µS/cm) 446.0 22.0 Chloride (mg/l) 4.4 0	mments: <u>NO SMELL</u>						
Water Quality During Purge Time Sp. Cond. Temp. pH 12:25 437.8 21.9 7.51 12:35 446.2 22.0 7.71 12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 End Purge 13:05 Sample Time 12:55 Multimeter Photometer Sp. Cond. (µS/cm) 446.0 22.0 Chloride (mg/l) 4.4 0							
Water Quality During Purge Time Sp. Cond. Temp. pH 12:25 437.8 21.9 7.51 12:35 446.2 22.0 7.71 12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 End Purge 13:05 Sample Time 12:55 Multimeter 12:55 Multimeter Photometer Sp. Cond. (µS/cm) 446.0 22.0 Sulfate (mg/l) 0 0	te: NQ=0.2301 gal/ft; HW=	0.6528 gal/ft; op	en hole(NQ)=0.	.3623 gal/ft			
Water Quality During Purge Time Sp. Cond. Temp. pH 12:25 437.8 21.9 7.51 12:35 446.2 22.0 7.71 12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 End Purge 13:05 Sample Time 12:55 Multimeter 12:55 Multimeter Photometer Sp. Cond. (µS/cm) 446.0 22.0 Chloride (mg/l) 4.4 0							
Time Sp. Cond. Temp. pH 12:25 437.8 21.9 7.51 12:35 446.2 22.0 7.71 12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 End Purge 13:05 Sample Time 12:55 Multimeter 12:55 Multimeter Photometer Chloride (mg/l) 4.4 0 0	est Information						
12:25 437.8 21.9 7.51 12:35 446.2 22.0 7.71 12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 Image: Sp. Cond. (µS/cm) 446.0 Image: Sp. Cond. (µS/cm) 446.0 Image: Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) 4.4 Image: Sp. Cond. (µS/cm) 446.0 Sulfate (mg/l) 0		Water Quality	During Purg	e			
12:35 446.2 22.0 7.71 12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 Image: Second Structure (°C) Image: Second Structure (°C) Image: Second Structure (°C) Image: Second Structure (°C) Image: Second Structure (°C) Image: Second Structure (°C) Image: Second Structure (°C) Image: Second Structure (°C) Image: Second Structure (°C) I			Temp.	рН			
12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 Image: Sp. Cond. (µS/cm) Multimeter Photometer Sp. Cond. (µS/cm) 446.0 22.0 Image: Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) Image: Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) Image: Sp. Cond. (µS/cm) 12:0 Image: Sp. Cond. (µS/cm) 10		407.0					
12:45 446.7 21.9 7.83 12:55 446.0 22.0 7.80 Image: Sp. Cond. (µS/cm) Multimeter Photometer Sp. Cond. (µS/cm) 446.0 22.0 Image: Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) Image: Sp. Cond. (µS/cm) 446.0 Sulfate (mg/l) Image: Sp. Cond. (µS/cm) 12:0 Image: Sp. Cond. (µS/cm) 10	12:25	437.8	21.9	7.51			
Multimeter Photometer Sp. Cond. (μS/cm) 446.0 Temperature (°C) 22.0					Start Purge _	11:35	
Multimeter Photometer Sp. Cond. (μS/cm) 446.0 Temperature (°C) 22.0	12:35	446.2	22.0	7.71	Start Purge _	11:35	
Multimeter Photometer Sp. Cond. (μS/cm) 446.0 Chloride (mg/l) 4.4 Temperature (°C) 22.0 Sulfate (mg/l) 0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83			
Sp. Cond. (μ S/cm)446.0Chloride (mg/l)4.4Temperature (°C)22.0Sulfate (mg/l)0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (μ S/cm)446.0Chloride (mg/l)4.4Temperature (°C)22.0Sulfate (mg/l)0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (μ S/cm)446.0Chloride (mg/l)4.4Temperature (°C)22.0Sulfate (mg/l)0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (μ S/cm)446.0Chloride (mg/l)4.4Temperature (°C)22.0Sulfate (mg/l)0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (μ S/cm)446.0Chloride (mg/l)4.4Temperature (°C)22.0Sulfate (mg/l)0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (μ S/cm)446.0Chloride (mg/l)4.4Temperature (°C)22.0Sulfate (mg/l)0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (μ S/cm)446.0Chloride (mg/l)4.4Temperature (°C)22.0Sulfate (mg/l)0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (μ S/cm)446.0Chloride (mg/l)4.4Temperature (°C)22.0Sulfate (mg/l)0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) 4.4 Temperature (°C) 22.0 Sulfate (mg/l) 0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (µS/cm) 446.0 Chloride (mg/l) 4.4 Temperature (°C) 22.0 Sulfate (mg/l) 0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Sp. Cond. (μS/cm) 446.0 Chloride (mg/l) 4.4 Temperature (°C) 22.0 Sulfate (mg/l) 0	12:35 12:45	446.2 446.7	22.0 21.9	7.71 7.83	End Purge	13:05	
Temperature (°C) 22.0 Sulfate (mg/l) 0	12:35 12:45	446.2 446.7 446.0	22.0 21.9 22.0	7.71 7.83	End Purge _ Sample Time _	<u>13:05</u> <u>12:55</u>	
	12:35 12:45 12:55	446.2 446.7 446.0	22.0 21.9 22.0	7.71 7.83 7.80	End Purge _ Sample Time _ Photomet	<u>13:05</u> <u>12:55</u>	
	12:35 12:45 12:55	446.2 446.7 446.0 	22.0 21.9 22.0	7.71 7.83 7.80	End Purge _ Sample Time _ Photomet ng/l)4.4	<u>13:05</u> <u>12:55</u>	
	12:35 12:45 12:55 	446.2 446.7 446.0 	22.0 21.9 22.0 	7.71 7.83 7.80	End Purge _ Sample Time _ ng/l)	<u>13:05</u> <u>12:55</u>	
	12:35 12:45 12:55 	446.2 446.7 446.0 	22.0 21.9 22.0 	7.71 7.83 7.80	End Purge _ Sample Time _ ng/l)	<u>13:05</u> <u>12:55</u>	

Figure I-13. Field sheet for the groundwater quality sample collected between 981 and 1,045 feet below land surface (water quality sample 13) at the ROMP 132 well site in Marion County.

				WQ No.	14
General Information					
Wellsite: ROMP 132	- Blitch Planta	ation		Date: 10/13/2008	
Well: Core Hole				Time: 17:00	
SID# 709163			Performe	d by: <u>A. Janosik</u>	
Well	Depth (ft bls)	1,155	Pac	ked Interval (ft-ft bls)	1,076-1,155
Casing (HW)				ed Interval (m-m bls)	
Casing (HW)				st Interval WL (ft bls)	
	Diameter (in.)			al Annulus WL (ft bls)	not measured
Note: 1ft = 0.3048 m		`´´´	•	· · · ·	
Purge Volume (gallons)	1 10 10	4070			
1 0.2301	g/ft X	1076	ft (interval)		gallons
2 0.3623	g/ft X	79	ft (interval)	-	gallons
	101	AL PURGE	VOLUME (or	ne) = 276	gallons
Pump Method	Reverse Air				
Airline Length		feet			
Discharge Rate (gpm)		gpm			
Pump Time / Volume		minutes X 1	HREE =	28	minutes
-		chardepor V	/ireline Baile	r or Nested Bailer	
Comments: SLIGHT SU			Virolino Ballo		
		_			
Note: NQ=0.2301 gal/ft; HW=	0.6528 gal/ft; op	pen hole(NQ)=0.	3623 gal/ft		
	- · ·				
Test Information					
,				1	
	Water Quality				
Time	Sp. Cond.	Temp.	pH		
16:28	452.1	22.6	7.50		
16:38	452.6	22.4	7.70	Start Purge	15:45
16:48	452.2	22.4	7.77		
16:58	452.9	22.3	7.75	End Purge	17:05
				Somelo Timo	17.00
				Sample Time	17:00
	N /1 142	otor		Photomete	r
	Multim				·]
Sp. Cond. (µS/cm)			Chloride (
Temperature (°C)			Sulfate (- ·	
pH (SU)	7.75	5	pН	(SU) 8.05	
				_	

Samples Sent to District's Laboratory for Standard Complete Analysis? (Y) or N

Figure I-14. Field sheet for the groundwater quality sample collected between 1,076 and 1,155 feet below land surface (water quality sample 14) at the ROMP 132 well site in Marion County.

eneral Information					
Wellsite: ROMP 132 ·	- Blitch Planta	ation		Date: 10/22/2008	
Well: Core Hole			Т	ime: 9:30	
SID# 709163			Performe	d by: A. Janosik	
Well	Depth (ft bls)	1,230	Pac	ked Interval (ft-ft bl	s) 1,186-1,23
Casing (HW)				ed Interval (m-m bls	
Casing (HW) D			- Initial Tes	st Interval WL (ft ble	s) not measure
	Diameter (in.)			I Annulus WL (ft bls	
te: 1ft = 0.3048 m					
irge Volume (gallons)					
1 0.2301	g/ft X	1186	ft (interval)	= 273	gallons
2 0.3623	g/ft X	44	ft (interval)		gallons
	•	AL PURGE	VOLUME (or	-	gallons
Pump Method Airline Length		feet			
Discharge Rate (gpm)					
Pump Time / Volume	10	minutes X 1	THREE =	29	minutes
Collection Method:					
omments: NO SMELL	Juliace Dis			of Mesteu Daller	
Nillinents. NO SMELL					
te: NO-0 2301 cal/ft: HW/-	0.6528.gal/ft:_or	en hole(NO)-0	3623 gal/ft		
te: NQ=0.2301 gal/ft; HW=	0.6528 gal/ft; op	pen hole(NQ)=0	.3623 gal/ft		
	0.6528 gal/ft; op	pen hole(NQ)=0	.3623 gal/ft		
est Information					
est Information	Water Quality	During Purg			
st Information	Water Quality Sp. Cond.	During Purg	e pH		
st Information	Water Quality	During Purg	e		
st Information	Water Quality Sp. Cond.	During Purg	e pH	Start Purge -	8:22
st Information	Water Quality Sp. Cond. 466.7	During Purg Temp. 21.5	е рН 7.40	Start Purge -	8:22
st Information Time 8:50 9:00	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9	е рН 7.40 7.77	Start Purge - End Purge -	
st Information Time 8:50 9:00 9:10	Water Quality Sp. Cond. 466.7 465.3 462.3	During Purg Temp. 21.5 21.9 22.1	рН 7.40 7.77 7.90		
Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94		9:40
Est Information Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Est Information Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Est Information Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Est Information Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Est Information Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40
Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8 460.2	During Purg Temp. 21.5 21.9 22.1 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _ Sample Time _	9:40 9:30
Est Information Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8	During Purg Temp. 21.5 21.9 22.1 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _	9:40 9:30
Est Information Time 8:50 9:00 9:10 9:20	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8 460.2	During Purg Temp. 21.5 21.9 22.1 22.1 22.1	pH 7.40 7.77 7.90 7.94	End Purge _ Sample Time _ Photome	9:40 9:30
est Information Time 8:50 9:00 9:10 9:20 9:30	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8 460.2	During Purg Temp. 21.5 21.9 22.1 22.1 22.1 22.1	e pH 7.40 7.77 7.90 7.94 7.99	End Purge _ Sample Time _ Photome ng/l)5.7	9:40 9:30
st Information Time 8:50 9:00 9:10 9:20 9:30 9:30 	Water Quality Sp. Cond. 466.7 465.3 462.3 461.8 460.2	During Purg Temp. 21.5 21.9 22.1 22.1 22.1 22.1 22.1 22.1	e pH 7.40 7.77 7.90 7.94 7.99 	End Purge _ Sample Time _ Photome ng/l)5.7	9:40 9:30

Figure I-15. Field sheet for the groundwater quality sample collected between 1,186 and 1,230 feet below land surface (water quality sample 15) at the ROMP 132 well site in Marion County.

				WQ No.	16
General Information		(a a	-		
Wellsite: ROMP 132	- Blitch Planta	tion	-	Date: 11/19/2008	
Well: Core Hole				ime: 13:40	
SID# 709163	3		Performe	d by: <u>A. Janosik</u>	
Well	Depth (ft bls)	1,310	Pac	ked Interval (ft-ft bls)	1,246-1,310
	Depth (ft bls)			ed Interval (m-m bls)	379.8-399.3
Casing (HW) I			Initial Te	st Interval WL (ft bls)	not measured
Hole I	Diameter (in.)	NQ (2 ³ /8)	Initia	al Annulus WL (ft bls)	not measured
Note: 1ft = 0.3048 m					
Purge Volume (gallons)					
1 0.2301	g/ft X	1246	ft (interval)	= 287	gallons
2 0.3623	g/ft X	64	ft (interval)		gallons
2 0.0020	U U		VOLUME (or	_	gallons
	101	ALTONOL			galions
Pump Method	l <u>Reverse Air</u>				
Airline Length		feet			
Discharge Rate (gpm)		gpm	-		
Pump Time / Volume		minutes X 1		31	minutes
				or Nested Bailer	-
Comments: Air temp = 5					eact. Also
	<u> </u>			e temp. NO SMELL	
Note: NQ=0.2301 gal/ft; HW=	=0.6528 gal/ft; op	en hole(NQ)=0	.3623 gal/ft		
Test Information					
	Water Quality	During Purg	Δ		
Time	Sp. Cond.	Temp.	с pH		
12:55	461.2	21.4	6.77		
13:05	461.9	21.7	7.14	Start Purge —	12.19
13:10	462.2	21.7	6.65	Start Purge -	12.10
13:20	461.9	21.7	7.31	End Purge	13:55
13:30	461.4	21.8	7.56		
13:40	462.1	21.8	7.62	Sample Time	13:40
				additional com	nment:
				Water very clea	
				bottom of disch	
					0.
	Multim	otor		Photomete	r
	Multime				
Sp. Cond. (µS/cm)			Chloride (I		
Temperature (°C)			Sulfate (- ·	
pH (SU)) 7.62	2	рH	(SU) 8.05	
Samples Sent to District	e laboratory f	or Standard	Complete An	alysis?(Y) or N	
Jampies Jent to District	ວ ∟abulatuly l	UI JIAHUAIU	Complete All	aiyələ: (i) UL IN	

Figure I-16. Field sheet for the groundwater quality sample collected between 1,246 and 1,310 feet below land surface (water quality sample 16) at the ROMP 132 well site in Marion County.

	formation					
		 Blitch Planta 	ation	_ [Date: 12/16/2008	
Well	: Core Hole			ר _	Time: 13:25	
SID#	[‡] 709163			Performe	d by: A. Janosik	
	Well	Depth (ft bls)	1,390	Pac	ked Interval (ft-ft bls	s) 1,346-1,39
(Casing (HW)	Depth (ft bls)	135	Pack	ed Interval (m-m bls	s) 410.3-423.
C	asing (HW)	Diameter (in.)	4	 Initial Te	st Interval WL (ft bls	s) not measure
		Diameter (in.)		 Initia	al Annulus WL (İt bls	s) not measure
ote: 1ft = 0.3	048 m			_		
urae Volui	me (gallons)					
1	0.2301	g/ft X	1346	ft (interval)	= 310	gallons
2		g/ft X	44	ft (interval)		gallons
			AL PURGE	VOLUME (or	L	gallons
	Pump Method Airline Length	Reverse Air 360	feet			
	e Rate (gpm)		gpm			
	ime / Volume		minutes X	THREE =	28	minutes
•						minutes
		Surface Dis	charges or v	vireline Ballei	r or Nested Bailer	
omments:	NO SMELL					
ote: NQ=0.23	301 gal/ft; HW=	0.6528 gal/ft; op	pen hole(NQ)=0).3623 gal/ft		
		0.6528 gal/ft; op	pen hole(NQ)=0).3623 gal/ft		
		0.6528 gal/ft; op	pen hole(NQ)=0	0.3623 gal/ft		
	nation	0.6528 gal/ft; op Water Quality]	
	nation Time					
	nation	Water Quality	During Purg	je		
	nation Time	Water Quality Sp. Cond.	During Purç Temp.	ge PH	Start Purce -	12:15
	Time 12:45	Water Quality Sp. Cond. 472.6	⁷ During Purg Temp. 22.4	ge pH 6.92	Start Purge _	12:15
	Time 12:45 12:55	Water Quality Sp. Cond. 472.6 472.6	During Purg Temp. 22.4 22.5	ge pH 6.92 7.25	-	
	Time 12:45 12:55 13:05	Water Quality Sp. Cond. 472.6 472.6 474.5	During Purg Temp. 22.4 22.5 22.5	ge pH 6.92 7.25 7.55	Start Purge _ End Purge _	
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	-	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30
	Time 12:45 12:55 13:05 13:15	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8	During Purg Temp. 22.4 22.5 22.5 22.5 22.5	pe pH 6.92 7.25 7.55 7.72	End Purge _	13:30 13:25
est Inforn	Time 12:45 12:55 13:05 13:15 13:25	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8 474.6	22.4 22.5 22.5 22.5 22.5 22.5	ge pH 6.92 7.25 7.55 7.72 7.74	End Purge _ Sample Time _	13:30 13:25
est Inforn	Time 12:45 12:55 13:05 13:15 13:25	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8 474.6	During Purg Temp. 22.4 22.5 22.5 22.5 22.5 22.5 0	ge pH 6.92 7.25 7.55 7.72 7.74 	End Purge _ Sample Time _ Photomet mg/l) 5.8	13:30 13:25
est Inforn	Time 12:45 12:55 13:05 13:15 13:25	Water Quality Sp. Cond. 472.6 472.6 474.5 473.8 474.6	During Purg Temp. 22.4 22.5 22.5 22.5 22.5 22.5 0	ge pH 6.92 7.25 7.55 7.72 7.74 	End Purge _ Sample Time _ Photomet mg/l) 5.8	13:30 13:25

Figure I-17. Field sheet for the groundwater quality sample collected between 1,346 and 1,390 feet below land surface (water quality sample 17) at the ROMP 132 well site in Marion County.

General Information	
Wellsite: ROMP 132 - Blitch Plantation	Date: 1/29/2009
Well: Core Hole	Time: <u>12:25</u>
SID# 709163	Performed by: <u>A. Janosik</u>
Well Depth (ft bls)1,460Casing (HW) Depth (ft bls)135Casing (HW) Diameter (in.)4Hole Diameter (in.)NQ (2 $\frac{3}{8}$ Jote: 1ft = 0.3048 mPurge Volume (gallons)10.2301g/ftX1461	Packed Interval (m-m bls) 433.1-445. Initial Test Interval WL (ft bls) not measured 8) Initial Annulus WL (ft bls) not measured
2 0.3623 g/ft X 39	ft (interval) = 14 gallons
S S S S S S S S S S S S S S S S S S S	SE VOLUME (one) = 350 gallons
Collection Method: Surface Discharge or Comments:	X THREE = 31 minutes Wireline Bailer or Nested Bailer
lote: NQ=0.2301 gal/tt; HW=0.6528 gal/ft; open hole(NQ))=0.3623 gal/ft
)=0.3623 gal/ft
)=0.3623 gal/ft
Test Information	
est Information Water Quality During Pu	urge
Test Information Water Quality During Pu Time Sp. Cond. Temp.	urge pH
Water Quality During Pu Time Sp. Cond. 11:35 521 22.5	urge pH 7.02
Test InformationWater Quality During PuTimeSp. Cond.Temp.11:3552122.511:4552122.5	urge pH 7.02 7.45 Start Purge <u>10:53</u>
Water Quality During Pu Time Sp. Cond. Temp. 11:35 521 22.5 11:45 521 22.5 11:55 520 22.5	urge pH 7.02 7.45 7.60 Start Purge <u>10:53</u>
Water Quality During Pu Time Sp. Cond. Temp. 11:35 521 22.5 11:45 521 22.5 11:55 520 22.5 12:05 521 22.5	urge pH 7.02 7.45 7.60 7.73 End Purge <u>12:30</u>
Water Quality During Pu Time Sp. Cond. Temp. 11:35 521 22.5 11:45 521 22.5 11:55 520 22.5 12:05 521 22.5 12:05 521 22.5 12:15 521 22.5	urge pH 7.02 7.45 7.60 7.73 End Purge <u>12:30</u>
TimeSp. Cond.Temp.11:3552122.511:4552122.511:5552022.512:0552122.5	urge pH 7.02 7.45 7.60 7.73 End Purge <u>12:30</u>

Figure I-18. Field sheet for the groundwater quality sample collected between 1,421 and 1,460 feet below land surface (water quality sample 18) at the ROMP 132 well site in Marion County.

	ormation		-		
Wellsite:	ROMP 132	 Blitch Planta 	ition	_ C	Date: 2/12/2009
Well:	Core Hole			_ т	ime: <u>13:20</u>
SID#	709163	1		Performe	d by: A. Janosik
	Well	Depth (ft bls)	1,500	Pac	ked Interval (ft-ft bls) 1,466-1,50
C	Casing (HW)	Depth (ft bls)	135	Packe	ed Interval (m-m bls) 446.8-457.
С	asing (HW) [Diameter (in.)	4	Initial Tes	st Interval WL (ft bls) not measure
	Hole [Diameter (in.)	NQ (2 ³ /8)	- Initia	I Annulus WL (ft bls) not measure
ote: 1ft = 0.30	048 m				
urge Volun	ne (gallons)				
1		g/ft X	1466	ft (interval)	= 337 gallons
2		g/ft X	34	ft (interval)	Ŭ
				VOLUME (or	
P	ump Method	Reverse Air			
	Airline Length		feet		
		34			
		10		THREE =	31 minutes
•					or Nested Bailer
omments:					
ote: NQ=0.23	01 gal/ft; HW=	0.6528 gal/ft; op	en hole(NQ)=0.	.3623 gal/ft	
est Inform	nation				
		Water Quality	During Purg		
	Time	Sp. Cond.	Temp.	pH	
	12:40	526	22.6	7.11	
	12:50	525	22.7	7.46	12:10
	12.00				
	13.10				Start Purge <u>12:10</u>
	13:10 13:20	526	22.7	7.74	
	13:10 13:20				Start Purge <u>12:10</u> End Purge <u>14:00</u>
		526	22.7	7.74	
		526	22.7	7.74	End Purge 14:00
		526	22.7	7.74	End Purge 14:00
		526	22.7	7.74	End Purge 14:00
		526	22.7	7.74	End Purge 14:00
		526	22.7	7.74	End Purge 14:00
		526	22.7	7.74	End Purge 14:00
		526	22.7	7.74	End Purge 14:00
		526	22.7	7.74	End Purge 14:00
		526 525	22.7	7.74	End Purge <u>14:00</u> Sample Time <u>13:20</u>
		526 525	22.7 22.7	7.74	End Purge 14:00
	13:20	526 525	22.7 22.7	7.74	End Purge <u>14:00</u> Sample Time <u>13:20</u> Photometer
	13:20	526 525	22.7 22.7	7.74 7.79	End Purge <u>14:00</u> Sample Time <u>13:20</u> Photometer ng/l) <u>8.6</u>
	ond. (µS/cm)	526 525 Multime 525 22.7	22.7 22.7	7.74 7.79 Chloride (r Sulfate (r	End Purge <u>14:00</u> Sample Time <u>13:20</u> Photometer ng/l) <u>8.6</u> ng/l) <u>10</u>
	13:20	526 525 Multime 525 22.7	22.7 22.7	7.74 7.79 Chloride (r Sulfate (r	End Purge <u>14:00</u> Sample Time <u>13:20</u> Photometer ng/l) <u>8.6</u> ng/l) <u>10</u>
	ond. (µS/cm)	526 525 Multime 525 22.7	22.7 22.7	7.74 7.79 Chloride (r Sulfate (r	End Purge <u>14:00</u> Sample Time <u>13:20</u> Photometer ng/l) <u>8.6</u> ng/l) <u>10</u>

Figure I-19. Field sheet for the groundwater quality sample collected between 1,466 and 1,500 feet below land surface (water quality sample 19) at the ROMP 132 well site in Marion County.

				WQ No.	20
General Information					
Wellsite: ROMP 132 -	Blitch Planta	ition		ate: 7/22/2010	
Well: Core Hole				me: <u>14:35</u>	
SID# 709163			Performed	by: <u>A. Janosik</u>	
Well [Depth (ft bls)	1,607	Pack	ed Interval (ft-ft bls)	1,557-1,607
Casing (HQ) [Depth (ft bls)	139	Packe	d Interval (m-m bls)	474.7-489.9
Casing (HQ) D	iameter (in.)	3	Initial Tes	t Interval WL (ft bls)	
Hole D	iameter (in.)	NRQ (2 ³ /8)	Initial	Annulus WL (ft bls)	not measured
Note: 1ft = 0.3048 m					
Purge Volume (gallons)					
1 0.2301	g/ft X	1557	ft (interval)	= 358	gallons
2 0.3623	g/ft X	50			gallons
2 0.0020	0		VOLUME (one		gallons
				<i>o</i> / = 0/ 0	ganono
Pump Method	Reverse Air				
Airline Length		feet			
Discharge Rate (gpm)		gpm			
Pump Time / Volume	47	minutes X T	THREE =	141	minutes
Collection Method:	Surface Dis	charge or V	Vireline Bailer	or Nested Bailer	
Comments:					
Note: NQ=0.2301 gal/ft; HW=0).6528 gal/ft; op	en hole(NQ)=0.	3623 gal/ft		
Test Information					
V	Vater Quality	Durina Pura	e		
Time	Sp. Cond.	Temp.	рН		
13:26	1124	24.38	6.12		
13:42	1124	24.41	7.15	Stort Durgo	11:00
13:52	1125	24.47	7.45	Start Purge —	
14:04	1125	24.28	7.55	End Purge	14:35
14:12	1125	24.20	7.63		
14:22	1125	24.23	7.70	Sample Time	14:35
				·	
			•		
	KA 141	-1		Dhotomoto	r
_	Multim			Photometer	·]
Sp. Cond. (µS/cm)	1122		Chloride (m		
Temperature (°C)	24.2	5	Sulfate (m		
pH (SU)	7.76	6	рН (SU) 8.15	
				\frown	
Samples Sent to District's	Laboratory f	or Standard	Complete Ana	lysis?(Y) or N	

Figure I-20. Field sheet for the groundwater quality sample collected between 1,557 and 1,607 feet below land surface (water quality sample 20) at the ROMP 132 well site in Marion County.

	WQ No. 21
General Information	
Wellsite: ROMP 132 - Blitch Plantation	Date: 8/2/2010
Well: Core Hole	Time: 17:00
SID# 709163	Performed by: A. Janosik
Well Depth (ft bls) 1,687	Packed Interval (ft-ft bls) 1,637-1,68
	Packed Interval (m-m bls) 499.0-514.
Casing (HQ) Depth (ft bls) 139 Casing (HQ) Diameter (in.) 3	Initial Test Interval WL (ft bls) not measured
Casing (ΠQ) Diameter (in.) 3	
Hole Diameter (in.) NRQ (2	³ /8) Initial Annulus WL (ft bls) not measured
ote: 1ft = 0.3048 m	
urge Volum <u>e (gallons)</u>	
1 0.3623 g/ft X 50	
2 g/ft X	ft (interval) = <u>2</u> gallons
TOTAL PUR	GE VOLUME (one) = 20 gallons
Pump Method Reverse Air	
Airline Length 160 feet	
Discharge Rate (gpm) <1 gpm	
	X THREE = minutes
Collection Method: Surface Discharge of	
omments: FLOW TOO LOW TO GET 3 WEL	
	OGS 8/2/2010). SAMPLE MAY NOT BE TRUE.
ote: NQ=0.2301 gal/ft; HW=0.6528 gal/ft; open hole(NC	<i>ג</i>)=0.30∠3 gai/π
est Information	
Water Quality During F	
Time Sp. Cond. Temp	o. pH
	SEE DAILY
	Start Purge LOGS
	Otart i dige
	End Purge 16:30
<u>├</u> ──┤──┤	Sample Time 17:00
Multimeter	Photometer
Sp. Cond. (µS/cm) 1413	Chloride (mg/l) 28.0
Temperature (°C) 24.20	Sulfate (mg/l) 930
pH (SU) 7.04	pH (SU) 7.60
	· · · · · · ·
amples Sent to District's Laboratory for Standa	ard Complete Analysis? (Y) or N
ampice dent to district's Laboratory for Stariu	

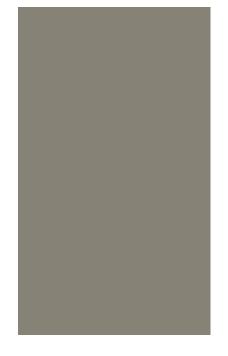
Figure I-21. Field sheet for the groundwater quality sample collected between 1,637 and 1,687 feet below land surface (water quality sample 21) at the ROMP 132 well site in Marion County.

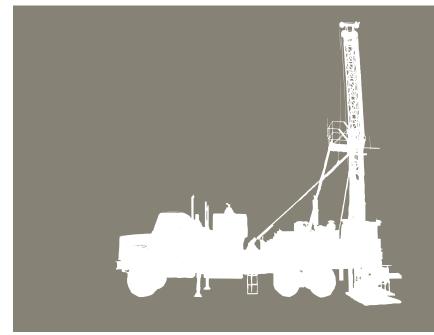
Table J-1. Groundwater quality parameters collected in the field at the ROMP 132 well site in Marion County, Florida. [Depths are in feet below land surface; Specific conductivity is reported in microSiemens per centimeter; CI^{-} , chloride concentration in milligrams per liter; SO_{4}^{-2} , sulfate concentration in milligrams per liter]

Sample number	Sampleo top	d interval bottom	Temperature in degrees Celsius	рН	Specific conductivity	CI	SO ₄ ²⁻
1	71	110	23.9	7.34	382.7	7.9	9
2	132	175	22.9	7.91	407.9	7.5	8
3	180	215	22.5	7.97	427.2	8.7	7
4	233	285	22.3	7.89	414.3	8.0	4
5	303	360	22.5	8.00	411.7	7.3	5
6	381	440	22.2	8.12	413.7	7.1	7
7	486	555	21.8	7.95	450.4	9.2	10
8	587	630	22.2	7.98	409.2	0.5	7
9	661	710	22.5	8.27	433.0	5.5	7
10	751	810	22.3	8.05	460.7	7.2	6
11	845	890	22.0	7.93	430.5	5.7	9
12	906	975	22.1	7.91	438.4	4.7	8
13	981	1,045	22.0	7.80	446.0	4.4	0
14	1,076	1,155	22.3	7.75	452.9	7.6	10
15	1,186	1,230	22.1	7.99	460.2	5.7	3
16	1,246	1,310	21.8	7.62	462.1	6.9	6
17	1,346	1,390	22.5	7.74	474.6	5.8	9
18	1,421	1,460	22.5	7.79	521.0	8.5	9
19	1,466	1,500	22.7	7.79	525.0	8.6	10
20	1,557	1,607	24.25	7.76	1,122	86	379
21	1,637	1,687	24.20	7.04	1,413	28	930

ida.
Flor
unty,
Cou
ion
Mar
e II.
ell sit
2 We
132
OMP 132
e RO
it th€
ed a
llect
s 00
nples
san
is of
alys
v an
ator
abora
2 2 2 2
s fro
eter
parameters fro
y pa
qualit
ater (
ewpu
rour
G
J-2.
able J-2.

[All depths are in teet below land surface; <, less than; Alk, alkalinity in milligrams per liter; Ca ²⁺ , calcium concentration in milligrams per liter; C1, chloride concentration in milligrams per liter; Cond., conduc- tivity in microSiemens per centimeter: Fe ²⁺ iron concentration in microorams per liter. K ⁺ notsesium concentration in milligrams per liter. Na ⁺ solium


1 71 1 2 132 1 3 180 2 4 233 2 5 303 3 6 381 4 7 486 5	110	5	Alk.	TDS	SO ₄ ²⁻	Si	Нd	Cond.	Ca²⁺	Fe ²⁺	Mg²+	¥⁺	Na⁺	Sr ²⁺
132 180 303 381 86		6.7	180.4	236	5.0	14.4	7.78ª	389	71.6	74	2.07	< 0.25 ^b	6.81	< 0.25 ^b
180 233 303 381 486	175	6.6	207.7^{a}	237	6.6	15.8	8.34^{a}	419	<i>77.9</i>	<12.5 ^b	8.14	1.75	5.16	< 0.25 ^b
233 303 381 486	215	8.1	215.2 ^a	263	3.2	18.2	8.27 ^a	446	82.9	<12.5 ^b	8.16	0.76°	5.33	$< 0.25^{b}$
303 381 486	285	6.8	213.1	248	3.2	17.5	8.26 ^a	423	64.7	<12.5 ^b	15.50	0.49°	4.47	$< 0.25^{b}$
381 186	360	6.1	217.3 ^a	221	3.4	17.6	8.29ª	424	61.9	<12.5 ^b	15.60	0.48°	4.01	$< 0.25^{b}$
	440	$6.9^{\rm ad}$	212.6^{ad}	240^{d}	7.1^{ad}	$18.4^{\rm ad}$	$8.23^{\rm ad}$	$424^{\rm ad}$	64.0	<12.5 ^b	14.50	0.55°	4.18	$< 0.25^{b}$
	555	9.1	218.1 ^a	272	15.5	16.5	8.26 ^a	460	52.5	23.6°	27.20	1.22	5.62	$< 0.25^{b}$
8 587 6	630	7.0ª	207.5	240	7.5 ^a	20.9	8.23 ^a	420	64.1	12.9°	15.00	0.51°	4.27	$< 0.25^{b}$
9 661 7	710	6.5 ^a	218.0^{a}	249	6.6^{a}	22.0	8.35 ^a	435	65.1a	$<\!12.5^{\mathrm{ab}}$	16.7^{a}	0.95^{ac}	5.91 ^a	$< 0.25^{\mathrm{ab}}$
10 751 8	810	8.3 ^{ad}	$208.5^{\rm ad}$	$246^{\rm ad}$	12.1 ^{ad}	$15.7^{\rm ad}$	8.02^{ad}	443^{ad}	68.7	<12.5 ^b	18.60	1.33	5.81	0.25°
11 845 8	890	$6.2^{\rm ad}$	218.2^{ad}	$248^{\rm ad}$	$7.3^{\rm ad}$	$16.8^{\rm ad}$	8.25^{ad}	$435^{\rm ad}$	68.9	<12.5 ^b	14.00	0.67°	4.58	$< 0.25^{b}$
12 906 9	975	$6.3^{\rm ad}$	219.7^{ad}	247^{d}	$6.9^{\rm ad}$	$16.1^{\rm ad}$	8.24 ^{ad}	439^{ad}	63.0	24.1°	19.80	0.86°	4.38	0.33°
13 981 1,	1,045	6.6 ^{ad}	226.9 ^{ad}	256^{d}	$10.2^{\rm ad}$	19.1 ^{ad}	$8.24^{\rm ad}$	$449^{\rm ad}$	62.4	25°	21.20	0.87^{c}	4.60	< 0.25 ^b
14 1,076 1,	1,155	$7.3^{\rm ad}$	217.1^{ad}	256^{d}	$7.7^{\rm ad}$	22.0^{ad}	$8.25^{\rm ad}$	443^{ad}	68.6	16.3°	15.80	0.54°	4.44	< 0.25 ^b
15 1,186 1,	1,230	6.6	222.3ª	275	8.8	20.0	8.12 ^a	443	70.6	<12.5 ^b	15.30	0.52°	4.54	$< 0.25^{b}$
16 1,245 1,	1,310	7.2	223.2ª	255	8.1	20.6	$8.24^{\rm a}$	455	71.4	<12.5 ^b	14.20	0.43°	4.41	< 0.25 ^b
17 1,346 1,	1,390	7.3	227.7^{a}	269	9.8	20.8	8.16^{a}	462	76.5	<12.5 ^b	12.50	0.33°	4.15	<0.25 ^b
18 1,421 1,	1,460	7.8	241.0	307	19.8	19.1	8.20^{a}	511	80.9	18.4°	13.20	0.41°	4.71	0.43°
19 1,466 1,	1,500	8.6	237.6	293	22.9	19.0	8.18^{a}	489	81.5	17.4°	13.70	0.41°	4.81	0.47°
20 1,557 1,	1,607	68.6	204.7	747	264.0	18.2	8.04^{a}	1,071	160.0	<12.5 ^b	27.40	1.16	44.9	5.11
21 1,637 1,	1,687	25.6	214.9^{a}	1,190	628.0	15.0	$7.72^{\rm a}$	1,473	300.0	2,870.0	22.70	0.99	15.50	9.18


sample held past recommended holding time

^b compound not detected, laboratory method detection limit reported

^c reported value is between the laboratory method detection limit and the laboratory practical quantification limit which is 4 times the detection limit

 $^{\rm d}$ the laboratory analysis was from an un-preserved or improperly preserved sample

