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modification to the simple theory is proposed. The versatility of this

novel proposal is demonstrated by predicting the cyclic hardening
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CHAPTER 1

INTRODUCTION

1 . 1 The Role and Nature of Theory

In most fields of knowledge, from physics to political science, it

is essential to construct a theory or hypothesis to make sense of a

complex reality. The complex reality scrutinized in this dissertation

is the load-deformation behavior of a statistically homogenous

assemblage of unbound particles. More specifically, the mathematical

theory of plasticity is used as the basis for developing a constitutive

model for granular material. Such constitutive relations are of

fundamental importance in a number of areas of science and technology

including soil mechanics, foundation engineering, geophysics, powder

processing, and the handling of bulk materials.

The mathematical theories of plasticity of this study should be

clearly distinguished from the physical or microstructural plasticity

theories which attempt to model the local interaction of the granules.

A mathematical (or phenomenological) theory is only a formalization of

known experimental results and does not inquire very deeply into their

physical basis. It is essential, however, to the solution of problems

in stress analysis and also for the correlation of experimental data

(Drucker, 1950b).



To explain or model the complex phenomenon of particles crushing,

distorting, sliding, and rolling past each other under load, a theory

must simplify and abstract from reality. However, these simplifications

and idealizations must lie within the realm of physically and

mathematically permissible stress-strain relations. The test of any

scientific theory is whether it explains or predicts what it is designed

to explain or predict, and not whether it exactly mirrors reality. The

most useful theory is the simplest one which will work for the problem

at hand. A theory can consider only a few of the many factors that

influence real events; the aim is to incorporate the most important

factors into the theory and ignore the rest.

1 .2 Statement of the Problem

The characterization of the complex stress-strain response of

granular media is a subject which has generated much interest and

research effort in recent years, as evidenced by the symposia organized

by Cowin and Satake (1978), Yong and Ko (1980a), Pande and Zienkiewicz

(1980), Vermeer and Luger (1982), Gudehus and Darve (1984), and Desai

and Gallagher (1984), among others. This focusing, of attention on

constitutive models is a direct consequence of the increasing use of the

finite element method to solve previously intractable boundary value

problems. Solutions obtained from this powerful computer-based method

are often precise to several significant digits, but this impressive

degree of precision loses its significance if the governing equations,

coupled with the constitutive assumptions or the imposed boundary

conditions, are inappropriate idealizations of the physical problem.



Progress in the area of theoretical modelling of soil response has

lagged conspicuously behind the state-of-the-art numerical solution

techniques. An all-encompassing stress-strain model for soil media, or

for that matter any other material, has yet to be formulated and

opinions differ as to whether such a task is even remotely possible. An

apparent drawback of all presently available constitutive relations is

that each has been founded on data gathered from standard laboratory

tests, and as Yong and Ko (1980b, p. 55) succinctly state, "the

relationships developed therefrom have been obviously conditioned to

respond to the soils tested as well as for the particular test system

constraints, and therefore the parameters used and material properties

sensed have been chosen to fit the test circumstance. Extension and

projection into a more general framework for wider use do not appear to

be sufficiently well founded."

Although the evolution of a fundamental set of constitutive

equations will benefit foundation engineering as a science, this

particular research effort was stimulated by the problem of rutting in

pavement base courses—in particular, the existing U.S. Air Force runway

system which is soon expected to be overloaded by a new generation of

heavier aircraft. Dr. Salkind (1984), the director of the Air Force

Office of Scientific Research (AFOSR), elucidates:

The relevance is extraordinarily high for this
nation. There is the obvious deterioration of our
highway system including potholes. The Air Force
has 3700 miles of runways around the world designed
for a 20 year life. Ninety-two percent are more
than 20 years old and 25 percent are significantly
deteriorated. The anticipated replacement cost
with today's technology is $1.9 billions. . . .The
underlying methodology is empirical and should be
put on a sound analytical basis. . . .The pavement
system, consisting of supporting soil,



underpavement, and paving material should be
analyzed for loads and moments (and loading
spectrum) recognizing the differing response of the
various layers with different material properties.
A basic science need is the lack of measuring
techniques for fundamental soil properties and
descriptions of soil constitutive properties.
Design is based on empirical values such as the
penetration of a standard cone. As soil is a

multi-phase mixture of solid particles, water, and
air, the challenge is to define what are the basic
fundamental properties (eg. soil "fabric" or
spatial arrangement of particles) and how such
properties change with loading (Personal
communication, October 12).

Ever since the pioneering work of Drucker and Prager (1952),

phenomenological plasticity theory has been developed and applied

extensively to model the mechanical behavior of soil. Constitutive

relations have grown increasingly complex as engineering mechanicians

have attempted to include the details of response for a broader spectrum

of loading paths. However, it is not clear that some of these more

sophisticated idealizations are better approximations of reality, or

whether they do capture the key aspects of soil behavior. The present

situation is complicated further by another problem: practicing

geotechnical engineers, the group most qualified to evaluate the

usefulness of these models, do not, for the most part, have a full and

working knowledge of tensor calculus and basic plasticity precepts.

They therefore tend to shun these potentially useful stress-strain

relations in favor of the simpler elastic and quasi-linear theories.

1 .3 Approach

Using concepts recently advanced by Drucker and Seereeram (1986), a

new stress-strain model for granular material is introduced. This



representation incorporates those key aspects of sand behavior

considered most important and relevant, while also attempting to

overcome the conceptual difficulties associated with existing theories.

Many aspects of conventional soil plasticity theory are abandoned in

this novel approach:

1

.

The material is assumed to remain at yield during unloading in

order to simulate inelastic response (either "virgin" or

partially hardened) on reloading.

2. Plastic deformation is assumed possible at all stress levels

(i.e., there is a vanishing region of elastic response for

loading or reloading) . The yield surface is not given by the

traditional permanent strain offset or tangent modulus

definitions, but by its tangent plane normal to the observed

plastic strain increment vector.

3. The consistency condition does not play a central role in the

determination of the plastic modulus. Instead, a scalar field

of moduli in stress space is selected to give the plastic

stiffness desired.

4. The limit surface is not an asymptote of or a member of the

family of yield surfaces. These distinct surfaces intersect at

an appreciable angle.

5. Hardening is controlled solely by changes in the plastic

modulus. Therefore, the surface enclosing the partially or

completely hardened region can be selected independently of the

size and shape of the current yield surface.

In its most elementary form, the model ignores changes in state

caused by the inelastic strain history. The field of plastic moduli



remains fixed and the yield surface expands and contracts isotropically

to stay with the stress point. Supplementary features, including

conventional work-hardening, bounding surface hardening, and cyclic

hardening or softening, can be added as special cases by some simple and

straightforward modifications to the basic hypotheses.

For comparative evaluation, a study of the Prevost (1978, 1980)

pressure-sensitive isotropic/kinematic hardening theory is also

undertaken. This model was chosen because it is thought of as the most

complete analytical statement on elasto-plastic anisotropic hardening

theories in soil mechanics (Ko and Sture, 1980)..

1 .4 Scope

Chapter 2 attempts to elucidate the fundamentals of plasticity

theory from the perspective of a geotechnical engineer. It is hoped

that this discussion will help the reader, particularly one who is

unfamiliar with tensors and conventional soil plasticity concepts and

terminology, to understand the fundamentals of plasticity theory and

thus better appreciate the salient features of the new proposal.

Based on well-known observations on the behavior of sand, details

of the new theory are outlined in Chapter 3. Specific choices are

tendered for the analytical representations of 1) the yield surface, 2)

the scalar field of plastic moduli (which implicitly specifies a limit

or failure surface), and 3) the evolution of the yield surface. Several

novel proposals are also embedded in these selections.

A procedure is outlined for computing the model constants from two

standard experiments: a hydrostatic compression test and an axial

compression test. Each parameter is calculated directly from the



stress-strain data, and the initialization procedure involves no trial

and error or curve fitting techniques. Each parameter depends only on

the initial porosity of the sand. What is particularly appealing is

that all model constants can be correlated directly or conceptually to

stress-strain or strength constants, such as friction angle and angle of

dilation (Rowe, 1962), considered fundamental by most geotechnical

engineers.

A number of hollow cylinder and solid cylinder test paths are used

to demonstrate the predictive capacity of the simple "non-hardening"

version of the theory. These tests include one series with a wide

variety of linear monotonic paths, another consisting of axial

compression paths on specimens prepared over an extended range of

initial densities and tested under different levels of confining

pressure, and still another sequence with more general load-unload-

reload stress paths, including one test in which the direction of the

shear stress is completely reversed. The range of the data permitted

examination of the influence of density, if any, on the magnitudes of

the model constants.

Although most of the predictions appeared satisfactory, many

questions are raised concerning the reliability of the data and the

probable limitations of the mathematical forms chosen for the yield

surface and the field of plastic moduli.

Two hardening modifications to the simple theory are described.

Unfortunately, both options sacrifice one important characteristic of

the simple model: the ability to model "virgin" response in extension

after a prior loading in compression, or vice-versa. The first, less

realistic option is an adaptation of Dafalias and Herrmann's (1980)
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bounding surface theory for clay, which is itself an outgrowth of the

nonlinearly hardening model proposed by Dafalias and Popov (1975). Two

modifications to the simple theory transform it to the first hardening

option: 1 ) the largest yield surface established by the loading history

is prescribed as a locus of "virgin" or prime loading plastic moduli

(i.e., a bounding surface), and 2) for points interior to the bounding

surface, an image point is defined as the point at which a radial line

passing through the current stress state intersects the bounding

surface. Then the plastic modulus at an interior stress state is

rendered a function of the plastic modulus at the image point and the

Euclidean distance between the current stress state and the image point.

These constitutive equations are implemented in a finite element

computer code to predict the results of a series of cyclic cylindrical

cavity expansion tests.

Based on the observations of Poorooshasb et al. (1967) and Tatsuoka

and Ishihara (1974b), a second, more realistic hardening option is

proposed. It differs from the bounding surface formulation in that 1)

the shape of the surface which encloses the "hardened" region differs

from the shape of the yield surface, and 2) a special mapping rule for

locating the conjugate or image point is introduced. The versatility of

this proposed (cyclic) hardening option is demonstrated by predicting a)

the influence of isotropic preconsolidation on an axial compression

test, and b) the buildup of axial strain in a uniaxial cyclic

compression test.

In Chapter 4 the Prevost (1978, 1980) model is described. Although

this theory has been the focus of many studies, the writer believes that

certain computational aspects of the hardening rule may have until now



been overlooked. These equations, appearing here for the first time in

published work, were gleaned from a computer program written by the

progenitors of the model (Hughes and Prevost, 1979).

Three experiments specify the Prevost model parameters: i) an axial

compression test, ii) an axial extension test, and iii) a one-

dimensional consolidation test, and although the initialization

procedure was followed with great care, this model seemed incapable of

realistically simulating stress paths which diverge appreciably from its

calibration paths. Because of this serious limitation, no effort was

expended beyond predicting one of the series of experiments used for

verifying the proposed model.



CHAPTER 2

PRELIMINARY AND FUNDAMENTAL CONCEPTS

2. 1 Introduction

It is the primary objective of this chapter to present and to

discuss in a methodical fashion the key concepts which form the

foundation of this dissertation. At the risk of composing this section

in a format which is perhaps unduly elementary and prolix to the

mechanicist, the author strives herein to fill what he considers a

conspicuous void in the soil mechanics literature: a discussion of

plasticity theory which is comprehensible to the vast majority of

geotechnical engineers who do not have a full and working knowledge of

classical plasticity or tensor analysis.

The sequence in which the relevant concepts are introduced is

motivated by the writer's background as a geotechnical

engineer—accustomed to the many empirical correlations and conventional

plane strain, limit equilibrium methods of analysis—venturing into the

field of generalized , elasto-plastic stress-strain relations. The terms

"generalized" and "elasto-plastic" will be clarified in the sequel. At

the beginning, it should also be mentioned that, although an attempt

will be made to include as many of the basic precepts of soil plasticity

as possible, this chapter will give only a very condensed and selected

treatment of what is an extensive and complex body of knowledge. In a

10
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less formal setting, this chapter might have been titled "Plain Talk

About Plasticity For The Soils Engineer."

2.2 Tensors

2.2.1 Background

Lack of an intuitive grasp of tensors and tensor notation is

perhaps the foremost reason that many geotechnical engineering

practitioners and students shun the theoretical aspects of work-

hardening plasticity, and its potentially diverse computer-based

applications in geomechanics.

In this chapter, the following terms and elementary operations are

used without definition: scalar , vector , linear functions , rectangular

Cartesian coordinates , orthogonality , components (or coordinates) , base

vectors (or basis) , domain of definition , and the rules of a vector

space such as the axioms of addition , scalar multiple axioms and scalar

product axioms . Except where noted, rectangular Cartesian coordinates

are used exclusively in this dissertation. This particular set of base

vectors forms an orthonormal basis , which simply means that the vectors

of unit length comprising the basis are mutually orthogonal (i.e.,

mutually perpendicular).

Quoting from Malvern (1969, p. 7),

Physical laws, if they really describe the physical
world, should be independent of the position and
orientation of the observer. That is, if two
scientists using different coordinate systems
observe the same physical event, it should be
possible to state a physical law governing the
event in such a way that if the law is true for one
observer, it is also true for the other.



1 2

Assume, for instance, that the physical event recorded is a spatial

vector t acting at some point P in a mass of sand, which is in

equilibrium under a system of boundary forces. This vector represents

some geometrical or physical object acting at P, and we can

instinctively reason that this "tangible" entity, t, does not depend on

the coordinate system in which it is viewed. Furthermore, we can

presume that any operations or calculations involving this vector must

always have a physical interpretation . This statement should not be

surprising since many of the early workers in vector analysis, Hamilton

for example, actually sought these tools to describe mathematically real

events. An excellent historical summary of the development of vector

analysis can be found in the book published by Wrede (1972).

Having established that the entities typically observed, such as

the familiar stress and strain vectors, are immutable with changes in

perspective of the viewer, we must now ask: How does one formulate

propositions involving geometrical and physical objects in a way free

from the influence of the underlying arbitrarily chosen coordinate

system? The manner in which this invariance requirement is

automatically fulfilled rests on the representation of physical objects

by tensors. To avoid any loss of clarity from using the word "tensor"

prior to its definition, one should note that a vector is a special case

of a tensor. There are several excellent references which deal with the

subject of vector and tensor analysis in considerably more detail than

the brief overview presented in the following. These include the books

by Akivis and Goldberg (1972), Hay (1953), Jaunzemis (1967), Malvern

(1969), Synge and Schild (1949) and Wrede (1972).
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Although the necessity to free our physical law from the

arbitrariness implicit in the selection of a coordinate system has been

set forth, it is important to realize that this assertion is meaningless

without the existence of such coordinate systems and transformation

equations relating them. The transformation idea plays a major role in

the present-day study of physical laws. In fact, the use of tensor

analysis as a descriptive language for theoretical physics is largely

based on the invariant properties of tensor relations under certain

types of transformations. For example, we can imagine that the vector t

was viewed by two observers, each using a different rectangular

Cartesian coordinate system (say rotated about the origin with respect

to each other). As a result, an alternative set of vector components

was recorded by each scientist. Nonetheless, we should expect the

length of the vector—a frame indifferent quantity—computed by both

observers to be identical.

The transformation rules, which guarantee the invariant properties

of vectors and tensors, are actually quite simple, but they are very

important in deciding whether or not a quantity does indeed possess

tensorial characteristics. To illustrate how a vector is converted from

one rectangular Cartesian coordinate system to another, consider the

following example in which the "new" coordinate components and base

vectors are primed (') for distinction. The transformation from the old

basis (I lt i 2 ,i s ) to the new basis (il.ij.ij) can be written in the

matrix form

C i 1 , 12,13] = [i1.i2.i3]
cosCii.ip cos(i 2 ,i[) cosUs.il)
cos(i 1( i 2 ) cos(i 2 ,i 2 ) cos(i

3 ,i 2 )

cos(ii,iJ) cos(i 2 ,i^) C03(i 3 ,ij)

(2.2.1.1)
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where cos(i lt IJ), for example, represents the cosine of the angle

between the base vectors i
:
and i^. This is an ideal juncture to

digress in order to introduce two notational conventions which save an

enormous amount of equation writing.

The range convention states that when a small Latin suffix occurs

unrepeated in a term, it is understood to take all the values 1,2,3.

The summation convention specifies that when a small Latin suffix is

repeated in a term, summation with respect to that term is understood,

the range of summation being 1,2,3. To see the economy of this

notation, observe that equation 2.2.1.1 is completely expressed as

im
= Q

mk V (2.2.1.2)

where Q
mk

is equal to oos(L,i»). The index "m" in this equation is

known as the free index since it appears only once on each side. The

index "k" is designated the dummy index because it appears twice in the

summand and implies summation over its admissible values (i.e., 1,2,3).

The corresponding transformation formulas for the vector components

(t to t*) can now be derived from the information contained in equation

2.2.1.2 and the condition of invariance , which requires the vector

representations in the two systems to be equivalent. That is,

t = t i = t' = t» i' (2.2.1.3)
k -k - m -m J

Substituting the inverse of equation 2.2.1.2 (i.e., i, = Q i')
-k kr ~r

into equation 2.2.1.3 leads to

t, Q, i' = t 1 i\
k kr -r r ~r

or

(t- - t, Q, ) i' =0,
r k kr -r

from which we see

K - \ Q
kr- (2.2.1.4)
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With the invariance discussion and the vector transformation

example as background information, the following question can now be

asked: What actually is a tensor? It is best perhaps to bypass the

involved mathematical definition of a tensor and to proceed with a

heuristic introduction (modified from Malvern, 1969, and Jaunzemis,

1967). The discussion will focus on the particular type of tensor in

which we are most interested: second order (or second rank), orthogonal

tensors.

Scalars and vectors are fitted into the hierarchy of tensors by

identifying scalars with tensors of rank (or order) zero and vectors of

rank (or order) one. With reference to indicial notation, we can say

that the rank of a tensor corresponds to the number of indices appearing

in the variable; scalar quantities possess no indices, vectors have one

index, second order tensors have two indices, and higher rank tensors

possess three or more indices. Every variable that can be written in

index notation is not a tensor, however. Remember that a vector has to

obey certain rules of addition, etc. or, equivalently, transform

according to equation 2.2.1.4. These requirements for first order

tensors (or vectors) can be- generalized and extended for higher order

tensors.

To introduce the tensor concept, let us characterize the state at

the point P (of, say, the representative sand mass) in terms of the

nature of the variable under scrutiny. If the variable can be described

b y a scalar point function , it is a scalar quantity which in no way

depends on the orientation of the observer. Mass, density, temperature,

and work are examples of this type of variable.
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Suppose now that there exists a scalar v ^ (such as speed)

associated with each direction at the point P, the directions being

described by the variable unit vector n. This multiplicity of scalars

depicts a scalar state , and if we identify this scalar with speed, for

instance, we can write

Y [n] = v,n, (2.2.1.5)
v
(n)

v = v [_nj = \ .,
- 11

(n) •wnere v is the component of speed in the nth direction, and the

square brackets are used to emphasize that y, the velocity vector, is a

linear operator on n. Deferring a more general proof until later, it

can be said that the totality of scalars v
(n)

at a point is fully known

if the components of v are known for any three mutually orthogonal

directions. At the point P, therefore, the scalar state is completely

represented by a first order tensor, otherwise known as a vector.

The arguments for a second order tensor suggest themselves if one

considers the existence of a vector state at P; that is, a different

vector, t
, is associated with each direction n. Two important

examples of this type of tensor— the stress tensor and the strain

tensor—are discussed in some detail in the following.

2.2.2 The Stress Tensor

An example of second order tensors in solid mechanics is the stress

tensor. It is the complete set of data needed to predict the totality

of stress (or load intensity) vectors for all planes passing through

point P.

Recalling the routinely used Mohr circle stress representation, we

generally expect different magnitudes of shear stress and normal stress

to act on an arbitrary plane through a point P. The resultant stress
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vector (or traction) t is unique on each of these planes and is a

function of n at the point P, where n is the unit vector normal to a

specified plane. In order to describe fully the state of stress at P, a

relationship between the vectors t and n must be established; in

other words, we seek a vector function of a single vector argument n.

It turns out that we are in fact seeking a linear vector function , say

o, which is a rule associating the vector t with each vector n in the

domain of definition. A linear vector function is also called a linear

transformation of the domain or a linear operator acting in the domain

of definition of the function a.

A second order extension of equation 2.2.1.5 is

t =2 Cn], (2.2.2.1)

where again the square brackets imply a linear operation. The linearity

assumption of the function o implies the following relationships:

o[(n x + n 2 )/|n! + n 2 |
] = aCnJ + a[n 2 ] (2.2.2.2)

for arbitrary unit vectors n
x
and n 2 , and

o[an] = a o[n^ (2.2.2.3)

for arbitrary unit vector n and real number a.

Geometrically, equation 2.2.2.2 means that the operator a carries

the diagonal of the parallelogram constructed on the vectors n 1 and n 2

into the diagonal of the parallelogram constructed on the vectors t l
=

a[nj and t 2 = g[na ]. Equation 2.2.2.3 means that if the length of the

vector n is multiplied by a factor a, then so is the length of the

4-(n) r -Ivector t = o[n].

Using a rectangular Cartesian coordinate system, the traction

vector t and the unit normal vector n can each be resolved into their
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components t x , t 2 , t 3 and n x , n 2 , n
3 respectively. The linear

relationship between t and n can be expressed in the matrix form

(2.2.2.4)rf (n) (n) .(n)-.
r

-.

L t i ,t 2 ,t 3 J = Ln 1 ,n 2 ,n 3 J

a 1 1 °12 Ol 3

a 21 o 22 a 23

03 1 o 32 o 3 3

or alternatively, in the indicial notation,

tj" = Oj. rij, (2.2.2.5)

where the components of the 3x3 matrix are defined as the stress

tensor acting at point P. Note that the wavy underscore under symbols

such as "a" is used to denote tensorial quantities; however, in cases

where indices are used, the wavy underscore is omitted.

In general, tensors can vary from point to point within the

illustrative sand sample, representing a tensor field or a tensor

function of position. If the components of the stress tensor are

identical at all points in the granular mass, a homogenous state of

stress is said to exist. The implication of homogeneity of stress (and

likewise, strain) is particularly important in laboratory soil tests

where such an assumption is of fundamental (but controversial)

importance in interpreting test data (Saada and Townsend, 1980).

Second order tensors undergo coordinate transformations in an

equivalent manner to vectors (see equation 2.2.1.4). For a pure

rotation of the basis, the tranformation formula is derived by employing

a sequence of previous equations. Recall from equation 2.2.1.4 that

t' = t, Q, ,

r k kr'

and by combining this equation with equation 2.2.2.5, we find that

t' = a.,n. Q, . (22261r Jk j kr (t.t.d.o)
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Furthermore, n in this equation can be transformed to n' resulting in

t' - a.. Q. n' Q. . (2.2.2.7)
r jk js s kr

The left hand side of equation 2.2.2.7 can also be replaced by the

linear transformation so that

o' n* =o ., Q. n' Q, ,pr p jk js s kr

which when rearranged yields

o' n 1 - o., Q. n' Q, = 0. (2.2.2.8)pr p jk js s kr v«..ct.u;

All the indices in equation 2.2.2.8 are dummy indices except "r"

—

the free index. A step that frequently occurs in derivations is the

interchange of summation indices. The set of equations is unchanged if

the dummy index "p" is replaced by the dummy index "s." This

manipulation allows us to rewrite equation 2.2.2.8 in the form

o' n' - o ., Q. n' Q, =0,
sr s jk js 3 kr '

and by factoring out the common term n' , we obtain

(a* - a., Q. Q, ) n' = 0.
sr Jk js kr s

From this equation, the tensor transformation rule is seen to be

o ' = a ., Q. Q, , (2.2.29)sr Jk js kr' kc..c*c*?}

or in tensor notation,

T2"9 5 9- (2.2.2.10)

It was previously stated (without verification) that a vector is

completely defined once its components for any three mutually orthogonal

directions are known. The reciprocal declaration for a second order

tensor will therefore be that the components of a second order tensor

are determined once the vectors acting on three mutually orthogonal

planes are given. For the particular case of the stress tensor, this

statement can be substantiated by inspecting the free body diagram of

Figure 2.1 (note that this is not a general proof). Here, a soil prism
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Figure 2.1 Representation of plane stress state at a "point'
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is subject to a plane stress state, plane stress simply meaning there is

no resultant stress vector on one of the three orthogonal planes;

therefore, the non-zero stress components occupy a 2x2 matrix instead of

the generalized 3x3 matrix. Generalized , in this context, refers to a

situation where the full array of the stress tensor is considered in the

problem, and when used as an adjective to describe a stress-strain

relationship , the word tacitly relates all components of strain (or

strain increment) to each stress (or stress increment) component for

arbitrary loading programs.

Figure 2.1 shows the two-dimensional free body diagram of a

material prism with a uniform distribution of stress vectors acting on

each plane; note that the planes AB and BC are perpendicular. By taking

moments about the point D, it can be shown that t = t , and this is
xy yx

known as the theorem of conjugate shear stresses , a relationship which

is valid whenever no distributed body or surface couple acts on the

element. This two dimensional observation can be generalized to three

dimensions, where as a consequence, the 3x3 stress tensor matrix is

symmetric. Symmetry implies that only six of the nine elements of the

3^3 matrix are independent.

By invoking force equilibrium in the x- and y-directions of Figure

2.1, the two resulting equations can be solved simultaneously for the

unknowns t
q

and o
e

, thus verifying that the shear and the normal stress

(or the stress vector in this case) on an arbitrary plane can be

computed when the stress vectors on perpendicular planes are known.

Extension of this two-dimensional result to three dimensions reveals

that the components of three mutually perpendicular traction vectors,
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acting on planes whose normals are the reference axes, comprise the rows

of the stress tensor matrix.

Most geotechnical engineers are familiar with the Mohr-Coulomb

strength theory for granular soils. This criterion specifies a limit

state (or a locus in stress space where failure occurs with "infinite"

deformations) based on a combination of principal stresses (ai, o 2 > and

o 3 ). As will be described in a later section on plasticity, even the

more recently proposed failure criteria for soils are also only

functions of the principal stresses. This is the motivation for

presenting the following procedure for computing the principal stresses

from the frame-dependent components of o.

A principal plane is a plane on which there are no shear stresses.

This implies that the normal stress is the sole component of the

traction vector acting on such a plane, and the geometrical

interpretation is that the traction vector and the unit normal vector

(n) to the plane at a point both have the same line of action.

Mathematically, the principal plane requirement can be expressed as

*( n )

t -An, (2.2.2.11

)

or in indicial notation,

t
i

"A n., (2.2.2.12)

where A is the numerical value sought. Remember that there are, in

general, three principal planes and therefore three principal values

(Ai , A 2 , and A 3 )

.

Substituting equation 2.2.2.12 into equation 2.2.2.5 and

rearranging leads to

°ji
n
j

"" A n
i

= °- (2.2.2.13)
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As an aid to solving this equation for A, an extremely useful

algebraic device, known as the Kronecker delta 5, is now introduced. It

is a second order tensor defined as

(2.2.2.14)

By writing out the terms in long form, one may easily verify that

6. .

1 if i = j

if i * j

5. . n..
ij J

(2.2.2.15)

Equation 2.2.2.15 can now be substituted into equation 2.2.2.13 to

give

o . . n. - A 6 . . n .

Ji J ij J
0,

or

(o.. - A 5. .) n. =0.
ji ij J

For clarity, equation 2.2.2.16 is expanded out to

(on - A) n t
+ o l2 n 2 + o 13 n 3

=

o 21 n t
+ (a 22 - A) n 2

+ o 23 n
3

= 0,

03i n i
+ 032 n 2 + (a 33 - A) n 3

=

which may be organized in the matrix form

0n"A o 12 a 13

02i o 22-A o 23

031 032 033~A

(2.2.2.16)

(2.2.2.17)

(2.2.2.18)

and where it is seen to represent a homogenous system of three linear

equations in three unknowns (n x , n 2 , and n 3 ) and contains the unknown

parameter A. The fourth equation for solving this system is provided by

the knowledge that

n-n = n. n. = 1

,

(2.2.2.19)

since n is a unit vector.

Equation 2.2.2.16 has a nontrivial solution if and only if the

determinant of the coefficient matrix in equation 2.2.2.18 is equal to
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zero (see, for example, Wylie and Barrett, 1982, p. 188). That is,

(2.2.2.20)

012 <Jl3

02i o 22 -A a 23

031 032 033~A

=

must be true for non-trivial answers.

This determinant can be written out term by term to give a cubic

equation in A,

A
3 - Ij A

2 - I 2 A - I 3
= 0,

where the coefficients

Ii = On + a 22 + a 33 = o
kk>

I 2 = -(o n o 22 + o 22 o 33 + j,,au ) + o 23 + o 31 + a
2
2

(2.2.2.21

)

(2.2.2.22)

and

( o..a.. - II ) 2,

011 0l2 Ol3

°21 °22 023

03 1 032 033

(2.2.2.23)

(2.2.2.24)

Since this cubic expression must give the sane roots (principal

stresses) regardless of the imposed reference frame, its coefficients

—

the numbers I lf I 2 , and I 3—must also be independent of the coordinate

system. These are therefore invariant with respect to changes in the

perspective of the observer and are the so-called invariants of the

stress tensor o. The notation I 1( I 2 , and I 3 are used for the first,

second, and third invariants (respectively) of the stress tensor a.

When provided with a stress tensor that includes off-diagonal terms

(i.e., shear stress components), it is much simpler to compute the

invariants as an intermediate step in the calculation of the principal

stresses. Of course, writing the failure criterion directly in terms of

the invariants is, from a computational standpoint, the most convenient

approach. In any event, one should bear in mind that the stress
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invariants and the principal stresses can be used interchangeably in the

formulation of a failure criterion. The following discussion centers on

a typical methodology for computing the principal stresses from the

stress invariants.

Start by additively decomposing the stress tensor into two

components: 1) a spherical or hydrostatic part (p 6..), and 2) its

deviatoric components (s,,). The first of these tensors represents the

average pressure or "bulk" stress (p) which causes a pure volumetric

strain in an isotropic continuum. The second tensor, s, is associated

with the components of stress which bring about shape changes in an

ideal isotropic continuum. The spherical stress tensor is defined as p

8 ,
where p is the mean normal pressure (o. , /3 or i l /s) and 6. . is theKK lj

Kronecker delta. Since, by definition, we know the spherical and

deviatoric stress tensors combine additively to give the stress tensor,

the components of the stress deviator (or deviatoric stress tensor) are

S
ij

=
ij

' P 6
ij

' (2.2.2.25)

where compression is taken as positive . This particular sign convention

applies throughout this dissertation.

The development of the equations for computing the principal values

and the invariants of a apply equally well to the stress deviator s,

with two items of note: a) the principal directions of the stress

deviator are the same as those of the stress tensor since both represent

directions perpendicular to planes having no shear stress (see, for

example, Malvern, 1969, p. 91), and b) the first invariant of the stress
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deviator (denoted by J
x ) is equal to zero. The proof of the latter

follows:

Ji = s tl + s 22 + s 33

= On -
J_

Ij + o 22 - 1 I, + ff„ - 1 I, = - I 1(

3 3 3

and by recalling equation 2.2.2.22, it is clear that

Ji = 0. (2.2.2.25)

From the last equation and equation 2.2.2.23, observe that the

second invariant of the stress deviation (denoted by J 2 ) is simply

J 2 = ^ijSij) * 2 - (2.2.2.26)

Denoting the third invariant of the stress deviation by J, f
the

cubic expression for the stress deviator s, in analogy to equation

2.2.2.21 for the stress tensor 0, becomes

A
3

- J 2 A - J 3 =0, (2.2.2.27)

where the roots of A are now the principal values (or more formally, the

eigenvalues) s u s 2 , and s 3 of the stress deviator s. Since the

coefficient (i.e., JJ of the quadratic term (A
2

) is zero, the solution

of equation 2.2.2.27 is considerably easier than that of equation

2.2.2.21. It is therefore more convenient to solve for the principal

values of s and then compute the principal values of a using the

identities

01=3!+ p, a 2 = s 2 + p, and o 3
= s 3

+ p. (2.2.2.28)

The direct evaluation of the roots, A, of equation 2.2.2.27 is not

obvious until one observes the similarity of this equation to the

trigonometric identity

sin 39 = 3 sine - 1 sin 3
e.
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Dividing through by four and rearranging shows the relevancy of this

choice,

sin 3
e - 3 sine + 1 sin 39 = 0. to o ? ?cn

4 - ic.c.c.cyj

Replacing A with r sine in equation 2.2.2.27 gives

r 3 sin 3
e - J 2 r sine - J 3 =0,

which when divided through by r 3 gives

sin 3
e - £2 sine - J 3 =0. (2.2.2.30)

r 2
r 3

A direct correlation of this equation with equation 2.2.2.29 shows that

ia. = 3
4

or

and

r = ±

7§
/Jz ' (2.2.2.31)

r

or

Jj. = ~ 1 sin 3e,
4

sin 3 e = -4^.
(2.2.2.32)

r 3

Substitution of the negative root of equation 2.2.2.31 into

equation 2.2.2.32 leads to

sin 39 = [3/3 (J3//J2 3
)], (2.2.2.33)

from which we find that

6 = 1 sin"
1

[3^3 (J 3 //J 2
3
)], (2.2.2.34)

where e is known as the Lode angle or Lode parameter (Lode, 1926). As

will be described in a later section on plasticity, the Lode angle is an

attractive alternative to the J 3 invariant because of its insightful

geometric interpretation in principal stress space. Physically, the
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Lode angle is a quantitative indicator of the relative magnitude of the

intermediate principal stress o 2 with respect to o x and <j 3 .

Owing to the periodic nature of the sine function, the angles 39,

39 + 2tt, and 39 + 4ti all give the same sine in terms of the calculated

invariants of the deviator in equation 2.2.2.33. If we further restrict

39 to the range ±ir ( i. e. , -ir S 9 H +tt), the three independent roots of
2 S 1

the stress deviator are furnished by the equations (after Nayak and

Zienkiewicz, 1972)

s x - - 2 /j 2 sin(6 + 4 ir), (222 35)
?3 3

s 2 = -2 /J 2 sin(e), (2.2.2.36)

and,

s 3 = - 2 /J 2 sin(9 + 2 tt )

.

f? ? ? ?i

)

73 3

U.*.*.37;

Finally, these relations can be combined with those of equation

2.2.2.28 to give the principal values of the stress tensor a,

"»i"| fsin (9 + 4/3 irj) n^
|° 2

[

= "2 /J z jsin 9 | + 1 ilxl . (2.2.2.38)

J Lsin (9 2/3 t)3
3 [i,]

To gain a clearer understanding of how the Lode angle 9 accounts

for the influence of the intermediate principal stress, observe from

this equation that

9 - sin [ a! * a 3 - 2 a, ], - 30° S 9 < 30°. (2.2.2.39)

2 A3 J 2 )

2.2.3. The Strain Tensor

The mathematical description of strain is considerably more

difficult than the development just presented for stress. Nevertheless,

a brief introduction to the small strain tensor is attempted herein,
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while the interested reader should refer to a continuum mechanics

textbook to understand better the concept and implications of finite

deformation. This presentation has been modified from Synge and Schild

(1949).

Most soils engineers are familiar with the geometrical measure of

unit extension, e, which is defined as the change in distance between

two points divided by the distance prior to straining or

e = (L x
- L ) * L , (2.2.3.1 )

where L and L^ are respectively the distances between say particles P

and Q before and after the deformation. If the coordinates of P and Q

are denoted by x (P) and x (Q) respectively, we know that

L? = Cx
r
(P) - x

p
(Q)] [x

p
(P) - x

p
(Q)] (2.2.3.2)

from the geometry of distances.

Further, if the particles P and Q receive displacements u (P) and

u^(Q) respectively, the updated positions (using primed coordinates for

distinction) are

x^(P) = x
p
(P) + u

r
(P), (2.2.3.3)

and

x£(Q) = x
p
(Q) + u

r
(Q). (2.2.3.4)

The notation u^(P) and u (Q) indicates that the particles undergo

displacments which are dependent on their position. Note that if the

displacement vector, u, is exactly the same for each and every particle

in the medium, the whole body translates without deforming—a rigid body

mot ion.
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From equations 2.2.3-3 and 2.2.3.4, we find that

L? = Cx^(P) - x'(Q)] [x;(P) - x^Q)],

= tx
r
(P) + u

r
(P) " x

r
(Q) ~ u

r
(Q)] x

Cx
r
(P) u

r
(P) - x

r
(Q) - u

r
(Q)], (2.2.3.5)

and subtracting equation 2.2.3.2 from this equation leads to

Li " Ll = [x
p
(P) + u

r
(P) - x

r
(Q) - u

r
(Q)][x

r
(P) u

r
(P) -

x
p
(Q) " u

r
(Q)] - [x

r
(P) - x

r
(Q)] [x

r
(P) - x (Q)],

which when reordered gives

Lf " L§ = [u
r
(Q) - u

r
(P)][u

r
(Q) - U (P)] +

2 Cx
r
(Q) - x

p
(P)][u

r
(Q) - U

p
(P)]. (2.2.3.6)

If attention is fixed on point P and an inf initesimally close

particle Q, the description of the state of strain at P can be put in a

more general form than the uniaxial unit extension measure. Since the

distance between P and Q is assumed small, the term

Cx
r
(Q) - x

p
(P)] [x

r
(Q) - x

r
(P)]

and its higher orders are negligible; a Taylor expansion about P is

therefore approximately equal to

U
r (Q)

- u
r
(P) = 3u

r
/3x

s | p
[x

s
(Q) - x

s
(P)]. (2.2.3.7)

Substitution of this equation into equation 2.2.3.6 gives

L? - L
2

= 3u
r
/8x

s | p
[x

s
(Q) - x

s
(P)] 3u

r
/3x

t | p
[x^Q) - x (P)] +

2 Cx
p
(Q) - x

r
(P)] 3u

r
/3x

m | p
[x
m
(Q) - yp)]. (2.2.3.8)

Furthermore, we know approximately that

Cx
r
(Q) - x

p
(P)] = L n

r
, (2.2.3.9)

where n
r

are the components of the unit vector directed from P to Q;

substitution of this relation into equation 2.2.3.8 gives
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L? - L
2

= 3u
r
/3x

s | p
L n

g
3u

r/3xJ p
L n

fc

2 L n 3u /3x L L n
r r m'P ° m

= L 2 [3u„/3xJ n n_ 3u._/3xJ„ n^ +

or

r s'P s r t'P t

2 n
p

3u
r /3xJ p

n
m], (2.2.3.10)

V u sip "s
ou

r
/OA tlp "t

2 n 3u /3x L n ]. (2.2.3.11 )v r m'P m * •*' '

If an assumption is made that the strain is small, 3u /3x
|

is

small and hence the product

3u /3x L 3u /3x t Lr s'P r t'P

in the last equation is negligible. Therefore, for small strain

i 3u /3x L n
r r m'P mkLlJki- 2 n 3u/3xJ p n. (2.2.3.12)

L5

Moreover,

L
i

~ L = L i
- L L

t
+ L

Lo L L

= L i I L ° L
t - L + 2 L n

L L

= L 1
- L [ L z

- L + 2]

L L

e
(

e +
2 ), (2.2.3.13)

and with the assumption of small strain, e
2

is negligible, which implies

that

L i " L o 2 e. (2.2.3.14)

r
2
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By equating the previous equation with equation 2.2.3.12, one finds

that

e = n 3u /3x I _ n . t? o a i c

^

r r tn'P m U.<2.3.i5J

If the components of the small strain tensor at point P are now

defined as

£
rs

=
1 C 3u

r
/8x

s
+ 3u

s
/3x

r
] ' (2.2.3.16)

then the unit extension of every infinitesimal line emanating from P in

the arbitrary direction n is given by

(2.2.3.17)

Soil engineers may wonder how the traditional shear strain concept

enters this definition of strain. It can be shown (see, for example,

Malvern, 1969, p. 121) that the off-diagonal terms of the tensor e are

approximately equal to half the decrease, Y , in the right angle

initially formed by the sides of an element initially parallel to the

directions specified by the indices r and s. This only holds for small

strains where the angle changes are small compared to one radian.

Another important geometrical measure in studying soil deformation

is the volume change or dilatation. The reader can easily verify that

the volume strain is equal to the first invariant (or trace) of the

strain tensor e (or in indie ial notation, e ).
mm

In analogy to the stress deviator, the strain deviator (denoted by

e) is given by

8
ij

= £
ij

'
\

E
mm

6
ij' (2.2.3.18)

and since, like stress, strain is a symmetric second order tensor, the

corresponding discussion for principal strains and invariants parallels
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the previous development for the stress tensor. In analogy to the

stress invariant /(3J 2 ), the shear strain intensity is given by

1 - /<! e^e..). (2.2.3.19)

2 «3 Stress-Strain Equations and Constitutive Theory

To solve statically indeterminate problems, the engineer utilizes

the equations of equilibrium, the kinematic compatibility conditions,

and a knowledge of the load-deformation response (or stress-strain

constitution) of the engineering material under consideration. As an

aside, it is useful to remind the soils engineer of two elementary

definitions which are not part of the everyday soil mechanics

vocabulary. Kinematics is the study of the motion of a system of

material particles without reference to the forces which act on the

system. Dynamics is that branch of mechanics which deals with the

motion of a system of material particles under the influence of forces,

especially those which originate outside the system under consideration.

For general applicability, the load-deformation characterization of

the solid media is usually expressed in the form of a constitutive law

relating the force-type measure (stress) to the measure of change in

shape and/or volume (strain) of the medium. A constitutive law

therefore expresses an exact correspondence between an action (force)

and an effect (deformation). The correspondence is functional— it is a

mathematical representation of the physical processes which take place

in a material as it passes from one state to another. This is an

appropriate point to interject and to briefly clarify the meaning of

another word not commonly encountered by the soils engineer: functional.
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Let us return to the sand mass which contains particle P and extend

the discussion to include M discrete granules (P., i= 1,2,. . . ,M). Say

the body of sand was subjected to a system of boundary loads which

induced a motion of the granular assembly, while an observer, using a

spatial reference frame x, painstakingly recorded at N prescribed time

intervals the location of each of the M particles. His data log

therefore consists of the location of each particle M (>cj and the time

at which each measurement was made (f). At the current time t (i t'),

we are interested in formulating a constitutive relationship which gives

us the stress at point P, and in our attempt to construct a model of

reality, we propose that such a relation be based on the MN discrete

vector variables we have observed; i.e., the M locations x, (in the

locality of point P) at N different times t' (S t). In other words,

stress at P is a function of these MN variables. This function

converges to the definition of a functional as the number of particles M

and the discrete events in the time set t' approach infinity.

For our simplest idealization, we can neglect both history and time

dependence, and postulate that each component of current stress o

depends on every component of the current strain tensor e and tender a

stress-strain relationship of the form

°ij " C
ijkl

e
kl' (2-3.D

or inversely,

e, ,
= D. . . . o . .

,

(2.3.2)kl klij ij yc.i.ci

where the fourth order tensors C. . and D (each with 81 components)
lJKJ. K-L1J

are called the stiffness and compliance tensors respectively. Both of

these constitutive tensors are discussed in detail later in this
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section. Note that the number of components necessary to define a

tensor of arbitrary order "n" is equal to 3 .

Because the behavior of geologic media is strongly non-linear and

stress path dependent, the most useful constitutive equations for this

type of material are formulated in incremental form,

5
ij

= c
ijki Kv (2 - 3 - 3)

or conversely,

Ki
= D

k iij v (2 -3-^)

where the superposed dot above the stress and strain tensors denote a

differentiation with respect to time. In these equations, C and D are

now tangent constitutive tensors. The terms a and e are the stress rate

and strain rate respectively.

If the "step by step" stress-strain model is further idealized to

be insensitive to the rate of loading, the incremental relationship may

be written in the form

do . .
= C. ., . de, . , (2.3.5)

ij ljkl kl'

or inversely,

de
kl

= D
kiij

do
ij' (2.3.6)

where do and de are the stress increment and strain increment

respectively, and C and D are independent of the rate of loading. Only

rate-independent constitutive equations are considered in this thesis.

The formulation, determination, and implementation of these

constitutive C and D tensors are the primary concern of this research.

In the formulation of generalized, rate independent, incremental

stress-strain models, the objective is one of identifying the variables

that influence the instantaneous magnitudes of the components of the

stiffness (C) or compliance (D) tensors. Such a study bears resemblance
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to many other specialized disciplines of civil engineering. The

econometric ian, for instance, may determine by a selective process that

the following variables influence the price of highway construction in a

state for any given year: cost of labor, cost of equipment, material

costs, business climate, and a host of other tangible and intangible

factors. The soils engineer, perhaps using the econometric ian 's

techniques of regression analysis and his personal experience, can

easily identify several factors which influence soil behavior. From our

basic knowledge of soil mechanics, we might make the following

preliminary list: 1) the void ratio or dry unit weight—perhaps the most

important measure of overall stiffness and strength of the material; 2)

the composition of the grains, which includes information on the mineral

type (soft or hard), particle shape, angularity of particles, surface

texture of particles, grain size distribution, etc.; 3) the orientation

fabric description or anisotropy of the microstructure; 4) the stress

history a or stress path, which may be used, for example, to indicate

how close the current stress state is to the failure line, the number of

cycles of loading, the degree of overconsolidation, etc.; 5) the

magnitude and direction of the stress increment da; 6) the rate of

application of the stress increment; and 7) the history of the strain

e
,
from which one may compute, for example, the current void ratio and

magnitude of the cumulative permanent distortion.

In writing general mathematical formulations, it is convenient to

lump all variables-except for a\ g* , and do-as a group known as the

set of n internal variables q. (i = 1,2,3,. . .,n). These internal

variables represent the microstructural properties of the material. A
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generalized, rate-Independent, Incremental stress-strain functional dp
can therefore be put in the form

d£ = de (a
1

, e
1

, da, g ).

TMs means that the components of the compliance (or stiffness, ten^
depends on s\ £\ d„ (and Us hIgher ^^ ^

One basic difference between the econometric!^ model and the

mechanicians load-deformation model must be emphaslzed; „,^^
is dealing with dependent and Independent variables which are physically
significant, but the eeonometr ician uaea variables which may frequently
he intangible. Therefore, 1„ the selection of constitutive variables
(such aa stress and strain, and In the actual formulation of the stress-
strain equations, certain physical potions (leading to mathematical

constraints) must be satisfied. These conditions are embodied In the
so-called axl^ms^rlnc^es of constitutive theory. An axiom Is a

well-established basis for theoretical develops, since geotechnical
engineers are, for the most part, Interested In isotherm processes
the principles lin.ed to thermomechanlcal behavior are suppressed In the
sequel.

^e A^io^^rs^n^ states that the motiQn Qf ^ ^^
points of a body is to be considered a self-evident nhsen evident, observable effect
in the mechanical behavior of the body. Any remaining entitles (such
ae the stress) that enter the entropy production and the balance
equations-i.e., the equations of conservation of mass, balance of
-mentum, and conservation of energy-are the causes or dependent
variables. In other words, there can occur no deformation (effect)
without an external force (cause).
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The Principle of Determinism is that the stress in a body is

determined by the history of the motion of that body. This axiom

excludes the dependence of the stress at a point P on any point outside

the body and on any future events. This phenomenon is sometimes

referred to as the Principle of Heredity .

In the purely mechanical sense, the Axiom of Neighborhood or Local

Action rules out any appreciable effects on the stress at P that may be

caused by the motion of points distant from P; "actions at a distance"

are excluded from constitutive equations.

During the discussion of stress and strain, it was made quite clear

that the tensor measures should be independent of the perspective of the

observer. It is therefore natural to suggest a similar constraint for

the constitutive equations: C and D must be form-invariant with respect

to rigid motions (rotation and/or translation) of the spatial frame of

reference. This is termed the Principle of Material Frame Indifference

or Objectivity .

Finally, the Axiom of Admissibility states that all constitutive

equations must be consistent with the basic principles of continuum

mechanics; i.e., they are subject to the principles of conservation of

mass, balance of momenta, conservation of energy, and the entropy

inequality.

2.4 A Note on Stress and Strain in Granular Media

The concepts of stress and strain discussed in the previous

sections are closely associated to the concept of a continuum, which

effectivelly disregards the molecular structure of matter and treats the

medium as if there were no holes or gaps. The following quotation from
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Lambe and Whitman (1969, p. 98) succintly summarizes the applicability of

the continuum stress measure to granular materials:

. . . when we speak of the stress acting at a
point, we envision the forces against the sides of
an inf initesimally small cube which is composed of
some homogenous material. At first sight we may
therefore wonder whether it makes sense to apply
the concept of stress to a particulate system such
as soil. However, the concept of stress as applied
to soil is no more abstract than the same concept
applied to metals. A metal is actually composed of
many small crystals, and on the submicroscopic
scale the magnitude of the forces vary randomly
from crystal to crystal. For any material, the
inside of the inf initesimally small cube is thus
only statistically homogenous. In a sense all
matter is particulate, and it is meaningful to talk
about macroscopic stress only if this stress varies
little over distances which are of the order of
magnitude of the size of the largest particle.
When we talk about about stresses at a "point"
within a soil, we often must envision a rather
large "point."

Local strains within a statistically homogenous mass of sand are

the result of distortion and crushing of individual particles, and the

relative sliding and rolling velocities between particles. These local

strains are much larger than the overall (continuum) strain described in

section 2.2.3. The magnitude of the generated strain will, as mentioned

before, depend on the composition, void ratio, anisotropic fabric, past

stress history, and the stress increment. Composition is a term used in

soil mechanics to refer to the average particle size, the surface

texture and angularity of the typical grain, the grain size

distribution, and the mineral type.

Figure 2.2 illustrates typical qualitative load-deformation

response of loose and dense soil media subject to two conventional

laboratory stress paths: hydrostatic compression, and conventional
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triaxial compression. Figure 2.3 shows these paths together with an

assortment of other "triaxial" stress paths used for research as well as

routine purposes. In this context, note that the adjective "triaxial"

is somewhat ambiguous since this particular test scenario dictates that

the circumferential stress always be equal to the radial stress. The

stress state is therefore not truly triaxial, but biaxial . As we can

gather from Figure 2.2, the stress-strain behavior of soil is quite

complicated, and in order to model approximately real behavior, drastic

idealizations and simplifications are necessary. More complex details

of soil response are mentioned in Chapter 3.

The major assumptions in most present idealizations are that: a)

soil response is independent of the rate of loading, b) behavior may be

interpreted in terms of effective stresses, c) the interaction between

the mechanical and thermal processes is negligible, and d) the strain

tensor can be decomposed into an elastic part (e
e

) and a plastic

conjugate (e
P

) without any interaction between the two simultaneously

occuring strain types,

e p
- " -

+
~ ' (2.4.1)

or in incremental form,

dS " d £
6+

d£
P

'

(2.4.2)

The elastic behavior ( £
e

or d£
e

) is modeled within the broad

framework of elasticity theory, while the plastic part (e
P

or de
P

) is

computed from plasticity theory. Both these theories will be elaborated

later in this chapter.

With the introduction of the strain decomposition into elastic and

plastic components, it is now important to emphasize the difference

between irreversible strains and plastic strains for cyclic loading on
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NAME OF TEST

Conventional Triaxial

Compression

Hydrostatic Compression

Conventional Triaxial

Extension

Mean Normal Pressure

Triaxial Compression

Mean Normal Pressure

Triaxial Extension

Reduced Triaxial

Compression

Reduced Triaxial

Extension

Standard
Designation

CTC

H C

TC

TE

RTC

RTE

DESCRIPTION

A0-x = Acrz = 0-, Ao-y >

A<7,= AC7Z = Acry >

CTE Ao-„ =Aa-2 >0; Ao-
y
=0

Ao-x + A<rz + Ao-y=0;
A<r

y
>Ao-x (=Ao-2 )

Ao-„ + A<r2 + Ao-y =0;
Acr

x =Acr
2 >Aay

Acrx =Acrr<0; Acr
y
=0

Ac <0j Acrx =Aa2 =0

q«ay -a„

ox-ol

3P=ay + 2a,

Figure 2.3 Typical stress paths used to investigate the stress-
strain behavior of soil specimens in the triaxial
environment
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soils. Consider a uniaxial cyclic test consisting of a virgin loading,

an unloading back to the initial hydrostatic state of stress, and a

final reloading to the previous maximum deviatoric stress level. During

the first virgin loading both elastic and plastic strains are generated,

and these components may be calculated using an elastic and a plastic

theory respectively. If at the end of this segment of the stress path

we terminate the simulation and output the total, elastic, and plastic

axial strains, one may be tempted to think that the plastic component

represents the irrecoverable portion of the strain. However, when the

stress path returns to the hydrostatic state, the hysteresis loop in

Figure 2A indicates that reverse plastic strains are actually generated

on the unload and a (small) portion of the plastic strain at the end of

the virgin loading cycle is, in fact, recovered. This is an

illustration of the Bauschinger effect (Bauschinger , 1887). Therefore,

for such a closed stress cycle, the total strain can more generally be

broken down into the three components:

e = e
P

e
P

+ E
e

~irrev -rev - '

where S irrev
is the irreversible plastic strain , e?

ey
is the reverse

plastic strain, and as before, £
e

denotes the elastic strain, which is

by definition recoverable. Some complicated models of soil behavior,

such as the one described in Chapter Four, allow for reverse plastic

strains on such "unloading" paths. However, ignoring this aspect of

reality, as is done in Chapter Three, can lead to very rewarding

simplifications.

Three broad classes of continuum theories have evolved in the

development and advancement of soil stress-strain models (Cowin, 1978):
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Figure 2.4 Components of strain: elastic, irreversible
Dlastic, and reversible plastic
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1) the kinematically ambiguous theories, 2) the phenomenological

theories, and 3) the microstructural theories.

The kinematically ambiguous hypotheses employ the stress equations

of equilibrium in conjunction with a failure criterion to form a system

of equations relating the components of the stress tensor. This

category is referred to as kinematically ambiguous because displacements

and strains do not appear in and are therefore not computed from the

basic equations of the theory. They assume the entire medium to be at a

state of incipient yielding. A modern example of this type of

formulation can be found in Cambou (1982).

A phenomenological continuum theory endeavors to devise

constitutive relations based on experimentally observed stress-strain

curves. It is presently the most popular class of the theories and it

concentrates on the macroscopically discernible stress and strain

measures. This theory does not inquire very deeply into the mechanisms

which control the process of deformation. A controversial assumption of

these phenomenological continuum theories, as applied to granular media,

is that the laboratory tests, such as the standard triaxial test,

achieve homogenous states of strain and stress. Many researchers are

now seeking the answer to the question of when bifurcation of the

deformation mode becomes acute enough to render interpretation of the

supposedly "homogenous state" data troublesome (see, for example, Lade,

1982, and Hettler et al., 1984).

Microstructural theories attempt to incorporate geometric measures

of local granular structure into the continuum theory. Local granular

structure is also called fabric , which is defined as the spatial

arrangement and contact areas of the solid granular particles and
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associated voids. For clarity, fabric is subdivided into isotropic

fabric measures (such as porosity, density, etc.) and anisotropic fabric

measures (which are mentioned in the next section). In this

dissertation, unless otherwise stated, the word fabric refers to

anisotropic fabric. Perhaps the best known microstructural formulation

is that proposed by Nemat-Nasser and Mehrabadi (1984).

2.5 Anisotropic Fabric in Granular Material

2.5.1 Introduction

The fabric of earthen materials is intimately related to the

mechanical processes occurring during natural formation (or test sample

preparation) and the subsequent application of boundary forces and/or

displacements. Fabric evolution can be examined in terms of the

deformations that occur as a result of applied tractions (strain-induced

anisotropy) , or the stresses which cause rearrangement of the

microstructure (stress-induced anisotropy). Strains are influenced to

some extent by the relative symmetry of the applied stress with respect

to the anisotropic fabric symmetry (or directional stiffness). If

straining continues to a relatively high level, it seems logical to

expect that the initial fabric will be wiped out and the intensity and

pattern of the induced fabric will align itself with the symmetry (or

principal) axes of stress. Before introducing and discussing a select

group of microscopic fabric measures, some of the commonly encountered

symmetry patterns, caused by combined kinematic/dynamic boundary

conditions, will be reviewed.
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2.5.2 Common Symmetry Patterns

Triclinic symmetry implies that the medium possesses no plane or

axis of symmetry. This fabric pattern is produced by complex

deformations. Gerrard (1977) presents a simple example of how this most

general and least symmetric system may arise. Consider the sketch in

the upper left hand corner of Figure 2.5: triclinic symmetry develops as

a result of the simultaneous application of compression in direction 1

,

differential restraint in directions 2 and 3, and shear stress

components acting in directions 2 and 3 on the plane having axis 1 as

its normal.

Monoclinic symmetry is characterized by a single plane of symmetry.

Any two directions symmetric with respect to this plane are equivalent.

An example of this symmetry group is shown in the lower left of Figure

2.5. The concurrent events leading to it are compression in direction

1 , no deformation in the 2 and 3 directions, and a shear stress

component acting in the 2-direction and on the plane with axis 1 as its

normal.

A slight modification of the previous example permits a

demonstration of a case of n-fold axis symmetry or cross-anisotropy .

Exclusion of the shear stress component causes an axis of fabric

symmetry to develop such that all directions normal to this axis are

equivalent, bottom right of Figure 2.5.

The orthorhombic symmetry group can best be described by bringing

to mind the true triaxial device. Here for example (top right of Figure

2.5), three mutually perpendicular planes of symmetry are produced by

normal stresses of different magnitudes on the faces of the cubical sand

specimen.
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Figure 2.5 Common fabric symmetry types (after Gerrard , 1977)
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Lastly, the rarest natural case is spherical symmetry or material

isotropy which implies that all directions in the material are

equivalent. However, because of its simplicity, isotropy is a major and

a very common simplifying assumption in many of the current

representations of soil behavior.

2.5.3 Fabric Measures

The selection of the internal variables, g , to characterize the

mechanical state of a sand medium (see equation 2.3.7) has been a

provocative subject in recent times (Cowin and Satake, 1978; and Vermeer

and Luger, 1982). There is no doubt that the initial void ratio is the

most dominant geometric measure, but as Cowin (1978) poses: "Given that

porosity is the first measure of local granular structure or [isotropic]

fabric, what is the best second measure of local granular structure or

[anisotropic] fabric?" Trends suggest that the next generation of

constitutive models will include this second measure. It is therefore

worthwhile to review some of these variables.

An anthropomorphic approach is perhaps most congenial for

introducing the reader to the concept of anisotropic fabric in granular

material. Let us assume for illustrative purposes that, through a

detailed experimental investigation, we have identified a microscopic

geometric or physical measure (say variable X), which serves as the

secondary controlling factor to the void ratio in interpreting the

stress-strain response of sand. Some of the suggestions offered for the

variable X are 1) the spatial gradient of the void ratio de (Goodman and
7x

Cowin, 1972); 2) the orientation of the long axes of the grains (Parkin



50

et al., 1968); 3) the distribution of the magnitude and orientation of

the inter-particle contact forces (Cambou, 1982); 4) the distribution of

the inter-particle contact normals (see, for example, Oda, 1982); 5) the

distribution of branches [note: a branch is defined as the vector

connecting the centroids of neighboring particles, and it is thus

possible to replace a granular mass by a system of lines or branches

(Satake, 1978)]; 6) the mean projected solid path (Home, 1964); and 7)

mathematical representations in the form of second order tensors

(Gudehus, 1968).

A commander (mother nature) of an army (the set representing the

internal variable of the sand medium) stations her troops (variable X)

in a configuration which provides maximum repulsive effort to an

invading force (boundary tractions). The highest concentration of

variable X will therefore tend to point in the direction of the imposed

major principal stress. If the invading army (boundary tractions)

withdraws (unloading), we should expect the general (mother nature) to

keep her distribution of soldiers (X) practically unaltered. It is an

experimental fact that there is always some strain recovery upon

unloading, and this rebound is caused partly by elastic energy stored

within individual particles as the soil was loaded and partly by

inelastic reverse sliding between particles (Figure 2.4).

Traditionally, it has been convenient to regard this unloading strain as

purely elastic, but in reality, it stems from microstructural changes

due to changes of the fabric and should be considered a dissipative

thermodynamically irreversible process (Nemat-Nasser, 1982). Returning

to our anthropomorphic description, we can therefore say that the

general (mother nature) has an intrinsic command to modify slightly the
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arrangement of her troops (X) once the offensive army (boundary

tractions) decamps. The configuration of the defensive forces

(distribution of X) after complete or partial withdrawal of the

aggressor (complete or partial removal of the boundary loads) still,

however, reflects the intensity and direction of the earlier attack

(prior application of the system of boundary loads). This represents an

induced fabric or stress-induced anisotropy in the granular material.

We can create additional scenarios with our anthropomorphic model

to illustrate other features of fabric anisotropy. During the initial

placement of the forces (initial distribution of the variable X during

sample preparation or during natural formation of the soil deposit)

under the general's command, there is a bias in this arrangement which

is directly related to the general's personality (gravity as a law of

nature). This is the so-called inherent anisotropy (Casagrande and

Carillo, 1944) of soil which differs from the stress-induced anisotropy

mentioned previously. Say the invading army (boundary tractions)

attacks the defensive fortress (sand mass) with a uniform distribution

of troops (uniform distribution of stress vectors), we will expect

maximum penetration (strain) at the weakest defensive locations

(smallest concentration of X), but our rational general (mother nature)

should take corrective measures to prevent intrusion by the enemy forces

(boundary tractions) through the inherently vulnerable sites (points of

initially low X concentration). We can relate this situation to the

effect of increasing hydrostatic pressure on an inherently cross-

anisotropic sand specimen; the results of such a test carried out by

Parkin et al. (1968) indicate that the ratio of the incremental

horizontal strain to incremental vertical strain decreases from about 6
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to 2.5. Increasing the hydrostatic pressure decreases the degree of

anisotropy, but it does not completely wipe out the inherent fabric. We

may infer that the general (mother nature) cannot reorient her forces at

will since she is faced by the annoying internal constraints (particles

obstructing each other) which plague most large and complex

organizations (the microscopic world of particles sliding and rolling

over each other).

It may seem logical to assume that if the demise of anisotropy is

inhibited in some way, then so is its induction, but experimental

evidence reported by Oda et al. (1980) indicates that the principal

directions of fabric (i.e., principal directions of the distribution of

X or the second order tensor representation) match the principal

directions of the applied stress tensor during a virgin or prime

loading, even with continuous rotation of the principal stress axes.

There appears to be no lag effect. Data presented by Oda (1972)

describing the evolution of the contact normal distribution suggests

that fabric induction practically ceases once the material starts to

dilate. However, no firm conclusions can be drawn until many tests have

been repeated and verified by the soil mechanics community as a whole.

2.6 Elasticity

We now turn our attention to the mathematical models used to

simulate the stress-strain response of soil. In this section, the

essential features of the three types of elasticity-based stress-strain

relations are summarized (Eringen, 1962): 1) the Cauchy type, 2) the

Hyperelastic (or Green) type, and 3) the incremental (or Hypoelastic)

type. Although, in the strict sense, elastic implies fully recoverable
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response, it is sometimes convenient to pretend that total deformations

are "elastic" and to disregard the elastic-plastic decomposition set

forth in equations 2.4.1 and 2.4.2. This approach has some practical

applications to generally monotonic outward loading paths. However, for

unload-reload paths, this class of formulation will fail to predict the

irrecoverable component of strain. Furthermore, one should not be

misled into believing that elasticity theory should be used exclusively

for predicting one-way loading paths because even in its most

complicated forms, elasticity theory may fail to predict critical

aspects of stress-strain behavior, many of which can be captured

elegantly in plasticity theory.

2.6.1 Cauchy Type Elasticity

A Cauchy elastic material is one in which the current state of

stress depends only on the current state of strain. Each stress

component is a single-valued function of the strain tensor,

ij = f
tJ

U
kl

). (2.6.1.1)

where f are nine elastic response functions of the material. Since

the stress tensor is symmetric, f = f and the number of these

independent functions reduces from nine to six. The choice of the

functions f must also satisfy the Principle of Material Frame

Indifference previously mentioned in section 2.3; such functions are

called hemitropic functions of their arguments. The stress o is an

analytic isotropic function of e if and only if it can be expressed as

°1J
=

*° 5
ij

+ ' e
ij

+ ** e
im

e
mj' (2.6.1.2)

where <j> , + lt and <j> 2 are functions only of the three strain invariants

(see, for example, Eringen, 1962; p. 158).



54

For a first order Cauchy elastic model, the second order strain

terms vanish (<j> 2 = 0) and <j> is a linear function of the first strain

invariant e ,

mm

o..=(a + a 1 e ) 6 . .
+ a 2 e. .

,

(2.6.1.3)
ij ° 1 mm ij ij

where a , a lf and a 2 are response coefficients. At zero strain, a 6. .

is the initial spherical stress. Higher order Cauchy elastic models can

be formulated by letting the response functions <j> , $ x> and <j> 2 depend on

strain invariant polynomials of corresponding order. For example, the

second order Cauchy elastic material is constructed by selecting as the

response functions

<J>
= a, e +a 2 (e )

2 +a,(1e..e..),l mm 2 mm " •» ij ij

mm

and

4>2 " a 6 l

where ala a 2I . . ., a 6 are material constants (Desai and Siriwardane,

1984).

An alternative interpretation of the first order Cauchy model is

presented in order to show the link between the elastic bulk and shear

moduli (K and G respectively) and Lame's constants (r and y). For this

material classification,

ij ljkl kl'

where the components of C..,, are each a function of the strain

components, or if isotropy is assumed, the strain invariants. Since

both o. . and e, . are symmetric, the matrix C. ... is also symmetric in
ij kl ljkl

"ij" and in "kl." A generalization of the second order tensor
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transformation formula (equation 2.2.2.9) to its fourth order analogue

produces

C! ., . = Q. Q. Q, Q n
C (2.6.1.4)ljkl lp jq kr Is pqrs

as the transformation rule for the "elastic" stiffness tensor C. With

the isotropy assumption, the material response must be indifferent to

the orientation of the observer, and hence we must also insist that C be

equal to C'. A fourth order isotropic tensor which obeys this

transformation rule can be constructed from Kronecker deltas 6 (see, for

example, Synge and Schild, 1949, p. 211); the most general of these is

c
ijki = r6

ij Si
+ « 6

ik
6
ji

+ v6u V (2 - 6 - 1 - 5)

where r, \i, and v are invariants. From the symmetry requirement,

C
ijkl

=C..
lk , (2.6.1.6)

or

F 6
ij

6
kl

+
»

6
ik

6
jl

+ v 6
il V "

r6
ij

6
lk

+ * 6
il

6
jk

+ v6
ik

6
jl'

(2.6.1.7)

and collecting terms,

(y " v) (5
ik

6 - 5n 6
jR

) = 0, (2.6.1.8)

which implies that \i - v. With this equality, equation 2.6.1.5

simplifies to

c
ijki = r6

ij
6
ki

+
^ (6

ik
6
ji

+ 6
ii V« (2 - 6 - 1 - 9)

where r and \i are Lame's elastic constants.

The incremental form of the first-order, isotropic, elastic stress-

strain relation is therefore

d
°ij = C F 6

ij
6
kl

+
"

(5
ik

6
jl

+ 6
il «jk ) ] de

kl

" F 6
ij

de
mm

+ 2 ^ d£
ij' (2.6.1.10)

Multiplication of both sides of this equation by the Kronecker delta 6.

.

results in
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%k= 3 rde
mm

+ 2ljde
mm'

(2.6.1.11)

or

d0
k k
/3de

mm
= •<= r + 2p, (2.6.1.12)

where K is the elastic bulk modulus.

Substituting the identities

do. . = ds. . + 1 do, , 6 . .

1J ij 3 kk ij

and

de. . = de. . + 1 de,
,

6 . .

IJ ij 3 kk ij

into equation 2.6.1.10 results in

ds. . + 1 do.. 8.. = r 6. . de + 2 y (de. . + 1 de,
,

6. .),
ij -x kk ij ij mm ij - kk ij

and using equation 2.6.1.11 in this expression shows that

ds.V2 de.j = G = y, (2.6.1.13)

where G is the elastic shear modulus.

Combining equations 2.6.1.12 and 2.6.1.13 gives a more familiar

form of the isotropic, elastic stiffness tensor, namely

C. ... - (K - 2 G) &,. 5, . +G(6., 6., +6., 6.,). (2.6.1.14)
ljkl - ij kl lk jl ll jk

Many researchers have adapted this equation to simulate, on an

incremental basis, the non-linear response of soil; they have all

essentially made K and G functions of the stress or strain level. Some

of the better-known applications can be found in Clough and Woodward,

1967; Girijavallabhan and Reese, 1968; Kulhawy et al., 1969; and Duncan

and Chang, 1970.
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2.6.2 Hyperelasticity or Green Type Elasticity

Green defined an elastic material as one for which a strain energy

function, W (or a complementary energy function, Q) exists (quoted from

Malvern, 1969, p. 282). The development of this theory was motivated by

a need to satisfy thermodynamic admissibility, a major drawback of the

Cauchy elastic formulation. Stresses or strains are computed from the

energy functions as follows:

°n " 3W (2.6.2.1)
J

3e..

and conversely,

e. = 3fl . (2.6.2.2)
J

9a..
ij

For an initially isotropic material, the strain energy function, W,

can be written out in the form (see, for example, Eringen, 1962)

W = H(I lf I 2 , I,) = A + Aj I, + A 2 I 2 + A 3 If + A ^ IJ +

A 5 I, I a + A 6 I 3
+ A 7 11 * A 8 If I, +

A 9 I x I, + A 10 If, (2.6.2.3)

where I lF I 2 , and I, are invariants of £,

fl = e
kk' * = 1 e

ij
e
ij'

f
3 =^e km

e
kn

c
mn ,

and A
k

(k =0,2,.., 10) are material constants determined from curve

fitting. The stress components are obtained by partial differentiation,

°i-
= M_iIi + liL iL. + QL fill (2.6.2.4)

J
31 x 3e. . 31, 3e. . 31. 3e. .

ij 2 ij 3 ij

= *i &, 4
+ * 2 e.. + $3 e. e ., (2.6.2.5)ij ij im mj' *'''"

where *, (i = 1,2,3) are the response functions which must satisfy the

condition 3^/31 = 3$ /3i in order to guarantee symmetry of the

predicted stress tensor.
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Different orders of hyperelastic models can be devised based on the

powers of the independent variables retained in equation 2.6.2.3. If,

for instance, we keep terms up to the third power, we obtain a second-

order hyperelastic law. These different orders can account for various

aspects of soil behavior; dilatancy, for instance, can be realistically

simulated by including the third term of equation 2.6.2.3. Green's

method and Cauchy's method lead to the same form of the stress-strain

relationship if the material is assumed to be isotropic and the strains

are small, but the existence of the strain energy function in

hyperelasticity imposes certain restrictions on the choice of the

constitutive parameters. These are not pursued here, but the interested

reader can find an in-depth discussion of these constraints in Eringen

(1962). Also, detailed descriptions— including initialization

procedures—for various orders of hyperelastic models can be found in

Saleeb and Chen (1980), and Desai and Siriwardane (1984).

2.6.3 Hypoelasticity or Incremental Type Elasticity

This constitutive relation was introduced by Truesdell (1955) to

describe a class of materials for which the current state of stress

depends on the current state of strain and the history of the stress a^

(or the stress path). The incremental stress-strain relationship is

usually written in the form

do = f(o , de), (2.6.3.1)

where f is a tensor valued function of the current stress o, and the

strain increment de. The principle of material frame indifference (or

objectivity) imposes a restriction on f: it must obey the transformation

Q f(o, de) Q
T

= f(Q de Q
T

, Q o Q
T

) (2.6.3.2)
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for any rotation Q of the spatial reference frame. When f satisfies

this stipulation, it is, as mentioned in the previous section, a

hemitropic function of a and de. A hemitropic polynomial representation

of f is

do' = f(o, de) = a tr(de) 6 + a x de + a 2 tr(de) a' +

a 3 tr(a' de) 6 + 1 a„ (de a* + o' de) + a 5 tr(de) a'
2 +_

a 6 tr(a' de) a* + a 7 tr(a' 2 de) 6 +

1 a 8 (de a'
2

+ a'
2 de) + a 9 tr(o' de ) a'

2 +

2

a 10 tr(o' 2 de) a' + ail tr(a' 2 de) a'
2

, (2.6.3.3)

where a' is the nondimensional stress g_/2u (u being the Lame shear

modulus of equation 2.6.1.10), a
k

(k = 0,2,..,11) are the constitutive

constants (see, for example, Eringen, 1962, p. 256), and "tr" denotes the

trace operator of a matrix (i.e., the sum of the diagonal terms). The

constants a. are usually dimensionless analytic functions of the three

invariants of a', and these are determined by fitting curves to.

experimental results.

Various grades of hypoelastic idealizations can be extracted from

equation 2.6.3-3. This is accomplished by retaining up to and including

certain powers of the dimensionless stress tensor a'. A hypoelastic

body °f grade zero is independent of o', and in this case, the general

form simplifies to

da' = f(o, de) = a tr(de) 6 + a x de. (2.6.3.4)

Comparing this equation with the first order Cauchy elastic model

(equation 2.6.1.10) shows that

oto - T and cii = 1 .

2 p
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Similarly, a hypoelastic constitutive equation of grade one can be

elicited from the general equation by keeping only the terms up to and

including the first power of a '

,

do 1

= f(a, de) = a tr(de) { + ai de + a 2 tr(de) a' +

a 3 tr(a' de) <5 + 1 a„ (de a' + a' de )

.

- - 2

By a similar procedure, the description can be extended up to grade two,

with the penalty being the task of fitting a larger number of parameters

to the experimental data. These parameters must be determined from

representative laboratory tests using curve fitting and optimization

techniques, which often leads to uniqueness questions since it may be

possible to fit more than one set of parameters to a given data set.

Romano (1974) proposed the following special form of the general

hypoelastic equation to model the behavior of granular media:

da. . = [a„ de + a 3 a de ] 6. . + a, de . . +
ij mm pq pq

J
lj l

j.j

[a. de + a 6 a de ]o... (2.6.3.5)2 mm 6 rs rs ij
^ ,U°' :,J

This particular choice ensures that the predicted stress increment is a

linear function of the strain increment; in other words, if the input

strain increment is doubled, then so is the output stress increment.

Imposing linearity of the incremental stress-strain relation is one way

of compelling the stress-strain relation to be rate-independent; a more

general procedure for specifying rate independence will be described in

the section on plasticity theory.

Davis and Mullenger (1978), working from Romano's equation, have

developed a model which can simulate many aspects of real soil behavior.

Essentially, they have used well-established empirical stress-strain
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relations and merged them with concepts from plasticity to arrive at

restrictions on and the interdependency of the constitutive parameters.

2.7 Plasticity

Having outlined the theories used to compute the elastic, or

sometimes pseudo-elastic component de
e

of the total strain increment de

,

the next topic deals with the computation of its plastic conjugate de P .

This section prefaces the mathematical theory of plasticity , a framework

for constitutive laws, which until 1952 (Drucker and Prager, 1952)

remained strictly in the domain of metals. Over the past three decades,

the role of elastic-plastic constitutive equations in soil mechanics has

grown in importance with the development of sophisticated computers and

computer-based numerical techniques. These tools have significantly

increased the geotechnical engineer's capacity to solve complicated

boundary value problems. The three main ingredients for these modern

solution techniques are computer hardware, numerical schemes, and

stress-strain equations, and, of these, the development of constitutive

laws for soils has lagged frustratingly behind.

The fundamentals of plasticity theory still remain a mystery to

many geotechnical engineers. It is very likely that a newcomer to this

field will find considerable difficulty in understanding the literature,

usually written in highly abstruse language. The chief objective of

this section is to provide some insight into plasticity theory by

highlighting the basic postulates, with special emphasis on their

applicability and applications to soil mechanics.
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In brief, plasticity theory answers these questions:

a) When does a material plastically flow or yield? Or more directly,

how do we specify all possible stress states where plastic

deformation starts? The answer to this question lies in the

representation of these stress states by yield surfaces . Also

underlying this discussion are the definitions of and the possible

interpretations of yield.

b) Once the material reaches a yield stress state, how are the plastic

strains computed? And, if the stress path goes beyond "the initial

yield surface (if an initial one is postulated), what happens to

the original yield surface (if anything)? The first question is

addressed in the discussion on the flow rule (or the incremental

plastic stress-strain relation) , while the second is treated in the

discussion on hardening rules .

2.7.1 Yield Surface

Perhaps the best starting point for a discussion of plasticity is

to introduce, or rather draw attention to, the concept of a yield

surface in stress space. At the outset, it should be noted that yield

is a matter of definition, and only the conventional interpretations

will be mentioned in this chapter. The reader is, however, urged to

keep an open mind on this subject since a different perspective, within

the framework of a new theory for sands, will be proposed in Chapter 3.

Since strength of materials is a concept that is familiar to

geotechnical engineers, it is used here as the stimulus for the

introduction to yield surfaces. Figure 2.6 shows a variety of uniaxial

rate-insensitive stress-strain idealizations. In particular, Figures
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(a)NONLINEARLY
ELASTIC

(b) LINEARLY
ELASTIC

(C) NONELASTIC,
OR PLASTIC

(d) RIGID,
PERFECTLY PLASTIC

7

(e) ELASTIC, (f) RIGID, (g) ELASTIC,
PERFECTLY WORK- WORK-
PLASTIC HARDENING HARDENING

Figure 2.6 Rate-independent idealizations of stress-strain
response
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2.6 (d) and (e) show examples of perfectly plastic response, and one may

infer from this that, for homogenous stress fields, yield and failure

are equivalent concepts for this simplest idealization of plastic

response.

In the calculation of the stability of earth structures, the Mohr-

Coulomb failure criterion is typically used to estimate the maximum

loads a structure can support. That is, when this load is reached, the

shear stress to normal stress ratio is assumed to be at its peak value

at all points within certain zones of failure. This method of analysis

is known as the limit equilibrium method. Using the classification set

forth in section 2.4, it is a kinematically ambiguous theory in that no

strains are predicted. Another common method of analysis is the wedge

analysis method. This is a trial and error procedure to find the

critical failure plane, a failure plane being a plane on which the full

strength of the material is mobilized and the critical plane being the

one that minimizes the magnitude of the imposed load.

A feature common to both the limiting equilibrium and the wedge

analysis methods is the need to provide a link between the shear and

normal stress at failure. A constitutive law, which is a manifestation

of the internal constitution of the material, provides this information.

More generally, the kinematically ambiguous theories for a perfectly

plastic solid must specify the coordinates of all possible failure

points in a nine dimensional stress space. Mathematically, this is

accomplished by writing a failure function or criterion in the form

F(c
i

.) = 0; many well-established forms of the yield function are

previewed in the following.
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The Mohr-Coulomb frictional failure criterion states that shear

strength increases linearly with increasing normal stress, Figure 2.7.

For states of stress below the failure or limit or yield line, the

material may be considered rigid [Fig. 2.6 (d)] or elastic [Fig.

2.6 (e)]. For a more general description, it is necessary to extend the

two-dimensional yield curve of Figure 2.7 to a nine-dimensional stress

space. Although such a space need not be regarded as having an actual

physical existence, it is an extremely valuable concept because the

language of geometry may be applied with reference to it (Synge and

Schild, 1949). The set of values on, o l2 . o X3 , o 2 i» o 22 > o Z3 , a»n o 32

and a 33 is called a point , and the variables o. . are the coordinates .

The totality of points corresponding to all values of say N coordinates

within certain ranges constitute a space of N dimensions denoted by V .

Other terms commonly used for V are hyperspace , manifold , or variety .

Inspection of, say, the equation of a sphere in rectangular

cartesian coordinates (x,y,z),

F(x,y,z) = (x - a) 2
+ (y - b) 2 + (z - c) 2 - k 2 =

where a, b, and c are the center coordinates and k is the radius, is a

simple way of showing that the nine-dimensional equivalent of a

stationary surface in stress space may be expressed as

F(o
i

) = 0. (2.7.1.1)

A surface in four or more dimensions is called a hypersurface . The

theoretician must therefore postulate a mechanism of yield which leads

directly to the formulation of a yield surface in stress space or he

must fit a surface through observed yield points.

Rigorously speaking, a yield stress (or point) is a stress state

which marks the onset of plastic or irrecoverable strain and which may
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criterion
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lie within the failure surface. Yield surfaces specify the coordinates

of the entirety of yield stress states. These (not necessarily closed)

surfaces bound a region in stress space where the material behavior is

elastic. But an all-important practical question still looms: How can

we tell exactly where plastic deformation begins? Is the transition

from elastic to elastic-plastic response distinct? At least for soils,

it is not that simple a task. The stress-strain curves continuously

turn, and plastic deformation probably occurs to some extent at all

stress states for outward loading paths. However,, for the perfectly

plastic idealization, there should be no major difficulty since the

limit states are usually easy to identify.

Among the techniques used to locate the inception of yield are:

a) for materials like steel with a sharp yield point, the yield

stress is usually taken as the plateau in stress that occurs just

after the yield point;

b) for soft metals like aluminium, the yield stress is defined as the

stress corresponding to a small value of permanent strain (usually

0.2$);

c) a large offset definition may be chosen which more or less gives

the failure stress;

d) a tangent modulus definition may be used, but it must be

normalized if mean stress influences response; and

e) for materials like sand which apparently yield even at low stress

levels, a Taylor-Quinney (1931) definition is used. This and some

of the alternative definitions are illustrated in Figure 2.8.
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Figure 2.8 Commonly adopted techniques for locating the yield
stress
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Soil mechanicians will identify the Taylor-Quinney definition with

the Casagrande procedure (Casagrande, 1936) for estimating the

preconsolidation pressure of clays.

Defining a yield surface using the methods outlined above usually

leads to one with a shape similar to that of the failure or limit

surface. However, in Chapter 3, an alternative approach will be

suggested for determining the shape of the yield surface based on the

observed trajectory of the plastic strain increment— for sands, these

surfaces have shapes much different from the typical failure or yield

surfaces.

2.7.2 Failure Criteria

If an existing testing device had the capability to apply

simultaneously the six independent components of stress to a specimen,

the yield function F(a.,) = could be fitted to a comprehensive data

set. Unfortunately, such equipment is not available at present, and

most researchers still rely on the standard triaxial test (Bishop and

Henkel, 1962). However, if the material is assumed to be isotropic, as

is usually done, then the number of independent variables in the yield

function reduces from six to three; i.e., the three stress invariants or

three principal stresses replace the six independent components of a.

In other words, material directions are not important, only the

intensity of the stress is. Therefore, by ignoring anisotropy, all that

the theoretician needs is a device, like the cubical triaxial device,

which can vary o lf a 2 , and a 3 independently.

Another implication of the isotropy assumption is that stress data

can be plotted in a three dimensional stress space with the principal
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stresses as axes. This stress space is known as the Haigh-Westergaard

stress space (Hill, 1950). Working in this stress space has the

pleasant consequence of an intuitive geometric interpretation for a

special set of three independent stress invariants. In order to see

them, the rectangular coordinate reference system (<ji, o 2 , a 3 ) must be

transformed to an equivalent cylindrical coordinate system (r, e, z) as

described in the following.

Figure 2.9 depicts a yield surface in Haigh-Westergaard (or

principal) stress space. The hydrostatic axis is defined by the line

"i = o 2 = a,,

which is identified with the axis of revolution (z). For cohesionless

soils (no tensile strength), the origin of stress space is also the

origin of this axis. A plane perpendicular to the hydrostatic axis

called a deviatoric or octahedral plane and is given by

Ox+02+03* constant.

When this constant is equal to zero, the octahedral plane passes through

the origin of stress space and is then known as a tt plane.

If we perform a constant pressure test (paths TC or TE of Figure

2.4), the stress point follows a curve on a fixed deviatoric plane for

the entire loading. Such stress paths provide a useful method for

probing the shape and/ or size of the yield surface's ir-plane projection

for different levels of mean stress. Polar coordinates (r, e) are used

to locate stress points on a given deviatoric plane.

By elementary vector operations, the polar coordinates r, 9, and z

can be correlated to each of the stress invariants /J 2 , e and I 1( which

were previously defined in equations 2.2.2.26, 2.2.2.39, and 2.2.2.22
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Figure 2.9 Yield surface representation in Haigh-Westergaard
stress space
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respectively. A measure of the shear stress intensity is given by the

radius

r = /(2J 2 ) (2.7.2.1)

from the hydrostatic point on the octahedral plane to the stress point.

The polar angle shown in Figure 2.9 is the same as the Lode angle

9. It provides a quantitative measure of the relative magnitude of the

intermediate principal stress (a 2 ). For example,

a 2 = a 3 (compression tests) 8 = +30°

Ox = a 2 (extension tests) *• 9 = -30°

and

Oi + o 3 = 2 a 2 (torsion tests) + 9 = 0°.

Lastly, the average pressure, an important consideration for

frictional materials, is proportional to the perpendicular distance "d"

from the origin of stress space to the deviatoric plane;

d = Ii//3. (2.7.2.2)

where I x is the first invariant of 0.

For isotropic materials, the yield function (equation 2.7.1.1) may

therefore be recast in an easily visualized form (Figure 2.9)

F(I lf /J 2 , 9) = 0. (2.7.2.3)

Some of the more popular failure/yield criteria for isotropic soils and

metals are reviewed in the following.

The much used Mohr-Coulomb failure criterion (Coulomb, 1773) for

soils is usually encountered in practice as

(gj ~ 03) - sin
<f>

- k, (2.7.2.4)

(ffi + a 3 )

where <j> is a constant termed the angle of internal friction. The symbol

"k" is used as a generic parameter in this section to represent the size
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of yield surfaces. This criterion asserts that plastic flow occurs when

the shear stress to normal stress ratio on a plane reaches a critical

maximum. If the equations which express the principal stresses in terms

of the stress invariants (equation 2.2.2.38) are substituted into

equation 2.7.2.4, the Mohr-Coulomb criterion can be generalized to

(Shield, 1955)

F " Ix sin <)> + /J a { sin e sin <j>
- cos 9 } = 0. (2.7.2.5)

3 73

A trace of this locus on the ir plane is shown in Figure 2.9. The

surface plots as an irregular hexagonal pyramid with its apex at the

origin of stress space for non-cohesive soils.

Also depicted in this figure are the well-known Tresca and Mises

yield surfaces used in metal plasticity. Mises (1928) postulated a

yield representation of the form

F = /Ja - k = 0, (2.7.2.6)

and physically, this criteria can be interpreted to mean that plastic

flow commences when the load-deformation process produces a critical

strain energy of distortion (i.e., strain energy neglecting the effects

of hydrostatic pressure and volume change).

Tresca (1864), on the other hand, hypothesized that a metal will

flow plastically when the maximum shear stress on any plane through the

point reaches a critical value. In the Mohr's circle stress

representation, the radius of the largest circle [(o x
- a 3 )/2] is the

maximum shear stress. Replacing the principal stresses with the stress

invariants gives the following alternative form for the Tresca

criterion:
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F - -1 /Ja [ sin (9 + 4 it) - sin (9 + 2 tt) ] - k = 0,

7T 3 3

which, upon expansion of the trigonometric terms, simplifies to

F = /J, cos 9 - k = 0. (2.7.2.6)

A noticeable difference between the Mises or Tresca criterion and

the Mohr-Coulomb criterion is the absence of the variable l x in the

former. This reminds us that yielding of metals is usually not

considered to be dependent on hydrostatic pressure, as the experiments

of Bridgman (1945) have demonstrated.

Drucker and Prager (1952) modified the Mises criterion to account

for pressure-sensitivity and proposed the form

F = /J^ - k = 0. (2.7.2.8)

lx

To match the Drucker-Prager and Mohr-Coulomb yield points in compression

space (o 2 = a 3 ), one must use

k = 2 sin j) (2.7.2.9)
/3 (3 ~ sin d>)

but, to obtain coincidence in extension space (a x
= a 2 ),

k = 2 sin ^ (2.7.2.10)
/3 (3 + sin <j>)

must be specified. Although the development of the Drucker-Prager yield

function was motivated mainly by mathematical convenience, it has been

widely applied to soil and rock mechanics. However, there is

considerable evidence to indicate that the Mohr-Coulomb law provides a

better fit to experimental results (see, for example, Bishop, 1966).

Scrutiny of sketches of the previously defined yield surfaces in

principal stress space (see Figure 2.9) reveals that they are all "open"

along the hydrostatic stress axis. Therefore, for an isotropic

compression path, no plastic strains will be predicted. This
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contradicts the typical behavior observed along such paths, Figure 2.2.

Recognizing this deficiency, Drucker et al. (1957) capped the Drucker-

Prager cone with a sphere to allow for plastic yielding for generally

outward but non-failure loading paths. The equation for the spherical

cap (of radius k) centered on the origin of stress space can be derived

by rearranging equation 2.2.2.23,

F(
0iJ

) = a
ij0ij

- k
2

= If - 2 I 2
- k

2 = 0. (2.7.2.11)

As a result of the development of more sophisticated testing

devices, sensing equipment, and data capture units, more reliable and

reproducible stress-strain data is becoming available. This has quite

naturally led to the development of many new mathematical

representations of yielding in soils. Most notably, Lade and Duncan

(1975), using a comprehensive series of test data obtained from a true

triaxial device (Lade, 1973), have suggested that failure is most

accurately modeled by the function

F = (IJ/I.) (Ii/P
a

)

m
- k = 0, (2.7.2.12)

where I, is the third stress invariant defined in equation 2.2.2.24, p

is the atmospheric pressure in consistent units, and m is a constant to

model deviation from purely frictional response. A spherical cap was

subsequently added by Lade (1977) to "close" this "open-ended" function

along the hydrostatic axis.

Another recent proposal, based on a sliding model, was put forward

by Matsuoka and Nakai (1974). They defined the spatial mobilized plane

as the plane on which soil particles are most mobilized on the average

in three dimensional stress space. Only for special cases when any two

of the three principal stresses are equal does this criterion coincide

with the Mohr-Coulomb criterion. Based on the postulate that the
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shear/normal stress ratio on the spatial mobilized plane governs

failure, Matsuoka and Nakai have derived the following failure

criterion:

F = /[ I t I 2 - 9 I 3 ] - k = 0. (2.7.2.13)

9 I 3

The mobilized plane concept is essentially a three-dimensional extension

of the Mohr-Coulomb criterion that takes into account the relative

weight of the intermediate principal stress.

Even more recently, Desai (1980) has shown that the Mises, Drucker-

Prager, Lade, and Matsuoka surfaces are all special cases of a general

third-order tensor invariant polynomial he proposed. Using statistical

analyses, he found that the failure criterion

F - [l a (I, I 3

1/3
)] - k = (2.7.2.14)

gave the best fit to experimental data sets on Ottawa sand and an

artificial soil. Research in this field is presently very active, and

as more high quality data becomes available, it is anticipated that even

more proposals for failure/ yield functions will emerge in the near

future.

2.7.3 Incremental Plastic Stress-Strain Relation, and Prager's Theory

A material at yield signals the onset of plastic strain, and this

section describes the computation of the resulting plastic strain

increment. By definition, plasticity theory excludes any influence of

the rate of application of the stress increment on the predicted plastic

strain increment, and as will be shown later, this leads to restrictions

on the possible forms of the stress-strain relation.
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In analogy to the flow lines and equipotential lines used in

seepage analysis, the existence of a plastic potential , G, in stress

space can be postulated such that (Mis'es, 1928)

de P = A 3G , A > (2.7.3.1)
J

9
°ij

where A is a scalar factor which controls the magnitude of the generated

plastic strain increment, and G is a surface in stress space (like the

yield surface) that dictates the direction of the plastic strain

increment. More specifically, the plastic strain increment is

perpendicular to the level surface G(o..) = at the stress point.

To get a better grasp of equation 2.7.3.1, the soils engineer may

think of the function G as a fixed equipotential line in a flow net

problem. The partial derivatives 3G/3o.. specify the coordinate

components of a vector pointing in the direction perpendicular to the

equipotential. This direction is, in fact, the direction of flow (along

a flow line) of a particle of water instantaneously at that spatial

point. Supplanting now the spatial coordinates (x,y,z) of the seepage

problem with stress axes (o
x , o , a

z
) , while keeping the potential and

flow lines in place, illustrates the mathematical connection between the

movement of a particle of water and the plastic deformation of a soil

element. The plastic geometrical change of a soil element is in a

direction perpendicular to the equipotential surface G(o..) = 0. At

different points in the flow problem, the particles of water move at

speeds governed by Darcy's law; therefore, it is possible to construct a

scalar point function which gives the speed at each location. In an

equivalent manner, the scalar multiplier A in equation 2.7.3.1

determines the speed (or equivalently , the magnitude of the incremental
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deformation) of the soil particle at different locations in stress

space. For example, the closer the stress point is to the failure line,

p
a larger magnitude of A (with a corresponding larger magnitude of de )

is expected. Therefore, in the crudest sense, the two elements of

plasticity theory which immediately confront us are: a) the

specification of the direction of the plastic strain increment through a

choice of the function G(o. .), and b) the computation of the magnitude

of de . There are, of course, other important questions to be answered,

such as "What does the subsequent yield surface look like?", and these

will be treated in later sections and chapters.

Mises (1928) made the assumption that the yield surface and the

plastic potential coincide and proposed the stress-strain relation

de
P

. = A 3F__. (2.7.3.2)
1J do..

This suggests a strong connection between the flow law and the yield

criterion. When this assumption is made, the flow rule (equation

2.7.3.1) is said to be associated and equation 2.7.3.2 is called the

normality rule . However, if we do not insist upon associating the

plastic potential with the yield function (as suggested by Melan, 1938),

the flow rule is termed non-associated . The implications of the

normality rule, it turns out, are far reaching, and as a first step to

an incisive understanding of them, Prager's (19^9) treatment of the

incremental plastic stress-strain relation will be summarized.

The first assumption is designed to preclude the effects of rate of

loading, and it requires the constitutive equation

de P = de P (a, da, q )
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to be homogenous of degree one in the stress increment do. Recall that

homogeneity of order n ensures that

de P = de P (o*. A do, gn
) = A

n
de p (o\ do, gn

), (2.7.3.3)

where A is a positive constant.

A simple example will help clarify this seemingly complex

mathematical statement. Suppose an axial stress increment of 1 psi

produced an axial plastic strain increment of .01 %; this means that if

A is equal to 2, and n - 1, the stress increment of 2 psi (A * 1 psi)

will predict a plastic strain increment of .02? (A x .01?) . Ideally

then, the solution should be independent of the stress increment,

provided the stiffness change is negligible over the range of stress

spanned by the stress increment.

The simplest option, which ensures homogeneity of order one, is the

linear form

de P
. = D. ... do.,, (2.7.3.4)

ij ljkl kl'

where D is a fourth order plastic compliance tensor, the components of

t , t
which may depend on the stress history o , the strain history e , the

fabric parameters, etc., but not on the stress increment do. This is

referred to as the linearity assumption.

The second assumption, the condition of continuity , is intended to

eliminate the possibility of jump discontinuities in the stress-strain

curve as the stress state either penetrates the elastic domain (i.e.,

the yield hypersurf ace) from within or is unloaded from a plastic state

back into the elastic regime. To guarantee a smooth transition from

elastic to elastic-plastic response and vice-versa, a limiting stress

t
increment vector, do , tangential to the exterior of the yield surface

must produce no plastic strain (note: the superscript "t" used here is
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an abbreviation for the word tangential and should not be interpreted to

imply history). As a consequence, an infinitesimal change of stress,

do, added to a body at yield [i.e., F(o) - k = is satisfied] gives

rise to three possibilities:

a). _9F:do < + pure elastic response (unloading) (2.7.3.5)
3c

b). j)F:da - * pure elastic response (neutral loading) (2.7.3.6)
3o

or

c). 3F:do > * elastic & plastic response (loading). (2.7.3.7)
3o

The notation ":" is the double contraction operator used here to

compactly denote the scalar product 3F do., (see, for instance,
3o~~:

1J

Malvern, 1969).

A further implication of the continuity condition can be deduced by

decomposing an arbitrary stress increment do into its components normal

(do ) and tangential (do ) to the yield surface,

do = do + do .

Since the incremental stress-strain relation is linear, we can

superpose the individual effects of do and do to obtain the combined

effect of do. But we know that do constitutes a neutral loading and

generates no plastic strain. Therefore, plastic loading is attributed

only to the normal component (do ) of do,

de P
« |do

n
|

= do:n = do:VF/|VF| , (2.7.3.8)

where n is the unit tensor normal to the yield surface, V is a vector
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differential operator which means, for example, that for the scalar

function F(x,y,z) = 0,

VF=3Fi+9Fj + _3Fk.
3x 3y 8z

In his presentation of the restrictions imposed by the uniqueness

condition , Prager (1949) made use of the following boundary value

problem: given the instantaneous mechanical state in a body together

with a system of infinitesimal added surface tractions, find the

corresponding stress increments throughout the body. A reasonable

demand is that plasticity theory predict a unique solution to the

problem. But let us assume that the boundary value problem admits two

solutions. Say these two solutions resulted in a difference between the

predicted stress increments at a given point of the body equal to A(dc),

and similarly, differences in elastic and plastic strain increments

e pequal to A(de ) and A(de ) respectively. Now, since the two solutions

correspond to the same increment of surface tractions on a body of

volume V, the principle of virtual work requires that

;
v

[ A(do) : {A(de
e

) + A(de P
)} ] dV = 0, (2.7.3.9)

with the integrand being positive definite. By virtue of Hooke's law,

the quantity

A(do):A(d£
8

)

will always be positive definite so proof of the uniqueness condition is

actually a proof that the quantity

A(do):A(de P
) (2.7.3.10)

is positive definite.

In considering equation 2.7.3-10, three cases must be examined:

a) both solutions result in unloading, b) both solutions involve
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loading, and c) one solution is an unloading event while the other is a

p
plastic loading process. For the first case, de is zero for both

instances and equation 2.7.3.10 vanishes trivially. To investigate the

second case, we label the two "loading" solutions as do and da and

require that the plastic strain increment be directed such that equation

2.7.3.10 is always positive. The limiting scenario occurs when da

(2)
and da are both tangential to the yield surface but directed in an

opposite sense. Therefore, the only provision which will ensure this is

a plastic strain increment directed along the outward normal to the

yield surface— i.e., the normality condition. The arguments for case 3

parallel those for case 2, and we can conclude that a sufficient

condition for uniqueness of a boundary value problem is that the flow

rule be associated and that normality of the plastic strain increment

apply,

d£
ii

a
7 ~ (2.7.3.11)

\n\

By merging the linearity, the continuity, and the uniqueness

conditions—equations 2.7.3.4, 2.7.3.8, and 2.7.3.11 respectively— , the

flow rule takes the form

d VF VF
de p = 1

-
{

-
: do}, K > (2.7.3.12)

K
p

|VF| |VF|

where, for reasons which will become apparent later, the scalar K (the

generalized plastic modulus) is used instead of its inverse. Equation

2.7.3.12 is valid only if the stress state resides on a yield surface

[i.e., F(a) = 0] and a plastic loading event is taking place (n:da > 0).



83

For non-associative flow, equation 2.7.3.12 is modified to

d VG VF
de = J !_ {_^ : do}, K

p
> (2.7.3.13)

K
p

|Vg| |VF|

where G is the plastic potential, a surface distinct from the yield

surface F.

Frequently in the literature on plasticity, the quantity

VF
L = J_ {

~
: do} (2.7.3.14)

K IvfI
p I -I

is synthesized as a single term and designated the loading function or

loading index "L." With this terminology, the flow rule is then

encountered as

de°
.

- L m.
.

,

(2.7. 3. 15)

where m are the components of the unit gradient tensor to the plastic

potential G.

If incremental plastic deformation takes place, the stress point,

which was initially on a yield surface, must move to another plastic

state. This means that the updated stress point must reside on another

yield surface or a transformed version of the initial one. In this

chapter, discussion is restricted to subsequent yield surfaces which

evolve from the initial one. In Chapter 4, the other option—the

multiple yield surface concept— is described in detail.

During plastic loading, the material remains at yield as it moves

from one plastic state F(o) = to another, F(o + do) = 0. When this

requirement is met, the consistency condition is said to be satisfied.

To stay with the stress point, the yield surface may undergo a size

change, or a shape change, or translate, or rotate, or undergo any

combination of these processes. No change in the initial yield surface



is the perfectly plastic idealization: the yield surface is also the

limit surface. In conventional plasticity, changes in the yield surface

occur only when the material undergoes plastic deformation (n:do > 0),

but Drucker and Seereeram (1986) recently proposed a new concept whereby

the yield surface also changes during unloading (n:do < 0). Such an

evolutionary rule is implemented in Chapter 3.

Remembering that the yield surface encloses the elastic (or

"stiffer") region, we may interpret these yield surface

transmogrifications as a specification of how the "hard" region in

stress space evolves during loading. These are the hardening rules of

plasticity. Anyone who has ever bent a wire hanger or a paper clip and

then tried to bend it back to its original shape can attest to the

phenomenon of hardening. Hardening of a material can also mean that

more work per unit volume is required to alter the plastic state. The

implications of this particular interpretation are profound, and they

are treated in the next section.

2.7.4 Drucker' s Stability Postulates

It is now approriate to introduce one of the cornerstones of modern

plasticity theory: Drucker' s stability postulates (Drucker, 1950a,

1950b, 1951, 1956, 1958, 1966). Emanating from these basic postulates

is a classification of material behavior which results in normality of

de at a smooth point on and convexity of the yield surface.

The meaning of work hardening in the case of an axial compression

test is simply that the stress is a monotonically increasing function of

strain. This is considered stable response. Drucker (1950a) observed,

however, that the definition of work hardening is not such a simple
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picture for more general states of stress and paths of loading where

some components of stress may increase, while others may decrease.

There, working from the notion of the stability of simple rigid bodies,

he advanced a definition of intrinsic material stability using the sign

of the work done by the addition of and the addition and removal of a

small stress increment. This is commonly referred to as "stability in

the small" to distinguish it from a later postulate he called "stability

in the large", wherein a finite disturbance was considered.

Imagine a material element with a homogenous state of stress a and

strain e. Let an external agency, entirely separate and distinct from

the agency which caused the existing state of stress and strain, apply

small surface tractions which alter the stress state at each point by da

and produce correspondingly small strain increments de . Next, assume

this external agency slowly removes the added surface tractions, and in

the process recovers the elastic strain increment de
8

. In layman terms,

a small external load is used to probe the stability of an existing

"system"; if the body "runs away" with any small probe, or if upon

removal of the probe the material rebounds past its original position,

the system is said to be unstable. Stability therefore implies that

positive work is done by the external agency during the application of

the set of stresses,

d2 :d£ > °» (2.7.4.1)

and that the net work performed by it over the cycle of application and

removal is zero or positive,

e n
da:(de - de ) = da:de > 0. (2.7.4.2)

It is emphasized that the work referred to is not the total work

done by all the forces acting, but only the work done by the added set
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on the displacements which result. The latter postulate (equation

2.7.4.2) can be rephrased: work hardening means that useful energy over

and above the elastic energy cannot be extracted from the material and

the system of forces acting upon it. If equation 2.7.4.2 is to hold for

any outward do, then it is obvious that de must be normal to the yield

surface.

Drucker (1951) extended his postulates by considering the external

agency to apply a finite set of surface tractions to the body with its

*
initial stress state o residing within the yield surface at a reference

time t = 0. The external agency first causes the stress state to move

to a point a (at time t) exactly on the yield surface. Then, it gives

rise to an infinitesimal loading increment da (with a corresponding

, p

.

de ), over an arbitrarily short interval At, which now moves the point

to a neighboring point outside of or on the yield surface. Finally, the

external agency removes the stress increment da and returns to a (at

time t ) along an elastic path. The net work done (dW ) by the

external agency over the cycle is assumed to be positive, and it is

equal to the total work during the cycle (dWt ) minus the work (dW ) that
t o

y
would have been done during the cycle by the initial stress a ,

dw
t

t rt+At

(a:de
e

) dt + [a:(de
6

+ de P
)] dt +

*

ft
(a:de

e
) dt. (2.7.4.3)

; t+At

However, the net elastic work during the cycle is zero so this

equation simplifies to

rt+At
dW = (a:de P

) dt

,

(2.7.4.4)
J
t
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and similarly, we can show that

[
t+At

*
dW

o
=

( 2 :d£
P

) dt - (2.7.4.5)

Therefore,

rt+At
dW . = dWt - dW =

net t o
[(a - a ):de P

] dt > 0, (2.7.4.6)
t

and so by Druoker's definition, the following must hold:

(a - a ):de P > 0. (2.7.4.7)

With this "stability in the large" restriction, convexity of the

yield surface can be demonstrated from simple geometric considerations:

#
all vectors a - a must lie to one side of the hyperplane which is

normal to the strain increment vector d£ P , and this must hold for all

points on the yield hypersurface , thus proving convexity. Drucker

(1956) has also shown that stability is a necessary condition for

uniqueness.

2.7.5 Applicability of the Normality Rule to Soil Mechanics

The essential difference between a plastic material and an

assemblage of two bodies with a sliding friction contact is the

necessary volume expansion which accompanies the latter in shear

(Drucker, 1954). This volume expansion will be predicted by a pressure

sensitive yield surface using the normality assumption. Experimental

studies on sand response all generally agree that normality of the shear

strain component is almost satisfied on the octahedral plane. However,

the observed volumteric component of the plastic strain increment. de
P

.

kk

has been found to be inconsistent with that specified by normality to a

conventionally defined yield surface— i.e., one using a moderate or



Taylor-Quinney definition of yield (see, for example, the study by Lade

and Duncan, 1975)

.

Two options are usually suggested to correct for this discrepancy:

the first and more complicated approach is to determine a plastic

potential function G, which is entirely distinct from and unrelated to

the yield surface. The second and perhaps more appealing approach is to

modify the normal vector 3F/3a to bring it into agreement with the

direction of de . As a first step to explaining the second alternative,

observe from equation 2.7.3.2 that

de
kk

= A 3F (2.7.7.1)
9a

kk

and

def = A 3F (2.7.7.2)
J

3s. .

1J

respectively.

In order to bring the gradient 3F/3o in line with the observed

trajectory of de , the volumetric component de£, and the deviatoric

components are modified by the scalar factors A
x
and A 2 ,

.P

kk
dej. = A A, 3F (2.7.7.3)

and

9<J
kk

de P = A A 2 3F . (2.7.7.4)
J

3s. .

To clarify the influence of these factors, these equation are

restated in terms of 'triaxial' stress parameters,

lv^ = A A x 3F

v 3p

dy^ = A A x 3F, (2.7.7.5)

and

de P
= 2 (de? - de?) - A A 2 3F, (2.7.7.6)

3 3q
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where d-\r/v is the plastic volume strain and d£ is the plastic

equivalent shear strain. Figure 2.10 is a geometric interpretation of

these equations. Figure 2.10 (a) corresponds to the normality rule

(i.e., Ai = A 2 =1 ) and Figure 2.10 (b) shows how the volumetric and

deviatoric components are modified to change both the magnitude and

direction of the resulting plastic strain increment vector. Lastly,

Figure 2.10 (c) illustrates how the magnitude of the plastic strain

increment vector may be changed without altering its direction.

Restrictions on the selection of the two factors Aj and A 2 imposed

by stability considerations have been discussed by Jain (1980).

Stability in the small (equation 2.7.4.2),

:

P = dp de P + ris. HpP >
kk

or for this special case,

do:de H = dp de£ + ds:dep > 0,

da
mn

d£
mn

= A [dp Al ^— + ds
ii

A
* £E ] = °» (2.7.7.7)

9c,
,

9s.

.

- .

kk ij

requires a frictional system to dissipate energy regardless of whether

it expands or contracts. Since shear distortions are considered to be

the result of frictional sliding and therefore dissipative, A 2 must

always be positive. On the other hand, the modifying factor A! is

permitted to take on a negative value. This means that the spherical

stress can extract energy from the system, but the choice of A x must

still ensure that total energy is dissipated (i.e., equation 2.7.7.7

must still hold). Examples of models which incorporate these parameters

can be found in the papers by Prevost (1978), Desai and Siriwardane

(1980), and Sture et al. (1984).
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?P
q de

p, dv p /v

(Q)

decP

dv p /v

A,de p

A^vVv

(b)

Ade^p

Figure 2.10 Diagrams illustrating the modifying effects of the
coefficients Ai and ki: (a) Ai = A2 = 1; (b) Ai j* A2;
(c) Ai = A2 = A (after Jain, 1980)
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2.7.6 Isotropic Hardening

Based on physical postulates and experimental stress probes,

various rules have been suggested to describe the metamorphosis (or

hardening) of the yield surface. Of these, the simplest idealization is

that of isotropic hardening (Hill, 1950). To illustrate this concept,

consider a hypothetical isotropic material with a circular initial yield

curve (or surface) centered at the origin of principal stress space and

of some initial radius k , Figure 2.11. Also assume the existence of an

outer concentric failure or limiting or bounding surface of fixed radius

k„. Although this is an inappropriate representation of yielding in

engineering materials, its visual and mathematical features are ideal

for demonstration. It is used almost exclusively in this section as a

vehicle for introducing other related concepts.

For a uniaxial compression stress path, Figure 2.11, the stress

point moves up the o x axis and meets the initial yield surface where o 1

= k , point A. As the stress point continues up this axis, the initial

surface expands uniformly about the origin to stay with the stress

point; the current radius of the circle k is equal to a x . Note also

that, from the geometry of this yield surface, the only non-zero

component of plastic strain is ef. If loading continues until ai = k
p ,

the material fails (i.e., K » 0), but if the path terminates at some

*
pre-failure stress <j, = k , point B in Figure 2.11, and is followed by

an (elastic) unloading back to the origin 0, the expanded yield surface

of radius k remains as memory of the prior loading. Now, if <j 2 is

increased while maintaining oj at zero stress, the material yields or

flows plastically only if o 2 reaches and then exceeds a magnitude of k .

Expansion of the yield surface takes place as before when c 2 > k .
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hardening
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Thus, in effect, isotropic hardening means that the material hardens

equally well in all directions— it remains isotropic despite the

hardening.

How might isotropic hardening correspond to reality? If the

material under investigation is a soil, we may assume that hardening

takes place primarily as a result of compaction, and that the

anisotropic realignment of the microstructure is insignificant.

Reduction in the porosity represents an all around (or isotropic)

hardening (or strengthening) of the material. However, if the hardening

is not due to an all around effect like porosity changes or if the

anisotropic fabric induction is consequential, then we must keep track

of the material directions and account for anisotropy within the

framework of plasticity theory. Because of the important role isotropic

hardening rules play in soil mechanics today, these are discussed in

some detail before introducing the specific rules designed for

anisotropic (or kinematic) hardening.

If the stress tensor appears as the only independent variable in

the equation for the yield surface, the configuration of the current

yield surface, as given by say the size of the isotropically expanding

or expanded circle, is determined solely by the stress history. This

particular choice is the basis for the stress hardening theories.

Prager (1949) proposed, however, that the mechanical state of a

material, as manifested by its yield surface, should, in addition to o,

also depend on the components of the plastic strain e
p

, F(o, e
P

) = 0.

Applying this postulate to the illustrative isotropic hardening model

implies that the radius, k, should depend on e
P

, F[a,k(e P
)] = 0. With
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this additional constraint, the consistency condition takes on added

importance since the differential

dF = 3F do . . + 3F de
P

= (2.7.6.1)

3c. 3e
P

ij rs

must be satisfied during plastic loading. Substituting the flow rule

(equation 2.7.3.12) into this equation makes the consequence of the

restriction more transparent,

31? do.. + 3F 1 3F 1 {3F do } = 0,

ij mn * mn pq

from which the scalar term (3F/3o. .)do.. may then be factored out to
J- J * J

show that

K
p

= " _9L_ 3|_ J » (2.7.6.2)

3e
P

3o |VF| 2

mn mn '
-'

or for the illustrative example,

K
p " " K _iH_ *I 3

• (2.7.6.3)

3k 3e p 3o |VfI 2

mn mn ' -'

Therefore, the plastic modulus can be computed directly from

equation 2.7.6.3 if one can postulate an equation linking the size of

the yield surface (k) with the plastic strain e
P

, or its invariants if

material isotropy is assumed. Even more generally, any number of

identifiable plastic internal variables g (including e
P

) may be used to

characterize the state of the material, F(o, g ) = 0. The name plastic

internal variable (PIV) is selected in order to emphasize its

association with plasticity in particular, while the name internal

variables is associated with inelasticity in general (Dafalias, 1984).

Examples of PIVs include the plastic strain tensor, the plastic work,

and a scalar measure of cumulative plastic strain; many authors prefer

to identify the (non-plastic) internal variables of soil as the
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porosity, and the numerous fabric measures such as the orientation of

the particles and their contact planes. The evolution of q is given by

dq = L r ,an -n'

where L is the loading index defined in equation 2.7.3.14, and r are

functions of the state variables (Lubliner, 1974). If, for example, q l

represents e
P

, then r 1 is the unit normal to the yield surface n in

associative plasticity. The generalization of equation 2.7.6.2 is

therefore

K
P

- -<*Lcn J_-

Perhaps the three most popular plastic internal variables used in

soil plasticity are the plastic volumetric strain e£ , the plastic work

V ' (
°ij

de
?j

5 dt « (2.7.6.4)

and the arc length of the deviatoric plastic strain e p

n = / /(dePjdeJ.) dt. (2.7.6.5)

When plastic work appears as the state variable, the formulation is

classified as a work-hardening theory. Similarly, if one or a

combination of the invariants or arc lengths of e
P

or its deviation e
P

are employed, the material is said to be strain-hardening. Concepts

similar to that of work hardening were employed as early as the 1930's

by Taylor and Quinney (1931 ) and Schmidt (1932). The arc length was

used as a state variable by Odqvist (1933). However, in these earlier

works, the total strain e was used instead of the plastic strain e
P

.

This was clearly inapproriate because elastic strains occuring within

the yield surface could alter it. With regards to modern soil

plasticity, the reader is referred to Lade's work (Lade and Duncan,

1975) to find an application of a work-hardening theory and to Nova and
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Wood's (1979) for a strain-hardening description. Mroz (1984) has

surveyed the many specialized forms of these plastic internal variables

or hardening parameters, with emphasis on their applications to soil

mechanics.

Models based on the concept of density or volumetric hardening

utilize the irreversible plastic volumetric strain as the state

variable, F(c, e£. ) = 0; examples of this approach can be found in

Drucker, Gibson, and Henkel (1957); Schofield and Wroth (1968); Roscoe

and Burland (1968); DiMaggio and Sandler (1971); and Sandler, DiMaggio,

and Baladi (1976). With this choice of state variable, equation 2.7.6.3

specializes to

K
p

= -3F_dk_J.3FJ (2.7.6.6)

9k deJL 3 3p |VF| 2

mm i — imm

where p is the mean stress.

One may wonder how the size of the yield surface k may be

analytically linked to the plastic volumetric strain e
P

. This is
mm

illustrated by alluding to an isotropically hardening spherical yield

surface. Consider the typical stress-strain response of soil in

hydrostatic compression, Figure 2.2, and observe from Figure 2.12 that

the radius of the yield surface (k) is equal to /3 p for this stress

path. The latter information could have also been retrieved directly

from equation 2.7.2.2. It is well known in soil mechanics that the

pressure- volume response along this path can be reasonably approximated

by the equation

p = p exp Ue£
k
), (2.7.6.7)

or alternatively,

k = k exp (Ae£
k
), (2.7.6.8)
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Figure 2.12 Two dimensional view of an isotropically hardening
yield sphere for hydrostatic loading
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where p (or k) and p (or k ) are the current and the initial sizes

respectively, and A is a constant which characterizes the plastic

compressibility of the material. Higher magnitudes of A imply a stiffer

(or denser) sand. Soils engineers will perhaps recognize this equation

as being an alternative expression for the linear voids ratio vs. log

mean stress plot.

From equation 2.7.6.7, we find that

dp = A p exp(A e£
k

) = A p, (2.7.6.9)

<
and for this particular empirical stress-strain relation, the plastic

modulus (derived from equation 2.7.6.6) is

K = -J 3 (9F)_
2

X p. (2.7.6.10)

|VF|
2

9p

Notice that K + as 3F/3p 0, which means that plastic flow is

isochoric (volume preserving) at failure. Normally consolidated clays

and loose sands generally exhibit this phenomenon.

Three types of hardening rules have been described: stress-

hardening, work-hardening, and strain-hardening. With work- and strain-

hardening, the plastic modulus is computed from the consistency

condition, but nothing has yet been said about the stress-hardening

theory. Because of its applicability to the proposed formulation in

Chapter 3i it is embedded in the ideas presented there.

Recently, Drucker and Palgen (1981, p.M82) reminded us that "the

temptation to think of the special form F(o, e ) = as a good first

approximation to reality must be resisted. Writing

dF = = 3F da , . + 3F de P
ij mn

3o.. 3e
P

ij mn
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and replacing

dF da. . by - 9F de
P

iJ —- ran

9a.. 9e
P

ij mn

generally leads to an undesirable and misleading constraint." They

proposed that the plastic modulus may be entirely stress dependent— that

is, the state of the material (i.e., the yield surface and the plastic

modulus) is given solely by the state of stress. In Chapter 3, it will

be shown that "freeing" the plastic modulus from the consistency

condition does, in fact, lead to a simpler and more elegant approach.

2.7.7 Anisotropic Hardening

Kinematic hardening is a term introduced by Prager (1955) to

describe his proposition that the yield surface rigidly translates in

stress space. It is easy to visualize this movement and its connotation

by considering again the hypothetical elastic-plastic material with the

circular yield surface, Figure 2.11. If after the unloading from <jj =

k to zero stress was followed by a complete reversal of o u the

isotropic hardening idealization would not predict any plastic strains

until d reaches and then goes beyond -k . Experimental evidence

suggests that this is not true: Bauschinger (1887) found that if a metal

specimen is compressed beyond its elastic limit, then its yield stress

in tension is lowered. This mode of response was anticipated earlier by

Wiedemann (i860) and has been confirmed more recently by many

experimental investigations. See, for example, Naghdi, Essenburg, and

Koff (1958); Ivey (1961); and Phillips and Weng (1975).

To capture the essence of the Bauschinger effect, Prager (1955)

assumed that the yield surface translates without deforming to follow
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the stress point, the direction of translation being the direction of

d£
P

.
With such an idealization, yielding would be predicted at point C

in Figure 2.11 on an unload following a loading from to B. This is in

striking contrast to point D, which would have been predicted for the

isotropic hardening theory. Therefore, in order to characterize more

generally a yield surface, not only should its size k be monitored, but

also its center coordinate £ . F( 2 , £, k) - 0. The consistency condition

is now more generally written as

dF = _3F:da + 9F:d£ + 3F dk = 0, f , 7 , „
9a If Jk

(2.7.7.1)

or F(o + da, g + d£, k + dk) = must be satisfied during plastic

loading.

Yield surfaces may simultaneously change their size and center

coordinate, and these are said to follow an isotropic/ kinematic

hardening rule. If the center coordinate g is some scalar magnitude

multiplied by the Kronecker delta 6, the material remains isotropic, but

in general, the translation of the yield surface takes induced

anisotropy into account and reflects the history of loading.

As mentioned before, Prager (1955) assumed that the yield surface's

center translates in a direction parallel to the plastic strain

increment vector ds
P

. However, in the application of this hardening

rule, a problem arises: although the yield surface remains rigid in

nine-dimensional stress space, it may not appear rigid in subspaces. To

overcome this difficulty, Ziegler (1959) proposed that the surface

translates in the direction of a radius connecting its center with the

stress point [i.e., d£ « («, - |)3 . Based on experimental observations>

Phillips (Phillips and Weng, 1975) has postulated that the yield surface
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translates in the direction of the stress increment (i.e., d£ * da),

while simultaneously changing its shape to manifest no cross effect. He

accomplished this by pulling in the "rear" of the yield surface as it

moved along the trajectory of the stress path. Baltov and Sawczuk

(1965) described an analytical hardening rule in which the yield surface

rotates in addition to translating and isotropically hardening.

Virtually all of these anisotropic hardening rules have been

employed in soil plasticity. Prevost (1978), in describing an early

version of his pressure- sensitive model, gives options for using all but

the rotation and shape transformation hardening. Anandarajah et al.

(1984) describe a special application wherein the yield surface is

permitted to rotate about the origin as well as isotropically expand. A

similar approach was also adopted by Ghaboussi and Momen (1982).

Poorooshasb, Yong, and Lelievre (1982) describe a graphical procedure

for obtaining the shape of the deviatoric section of the yield surface

for complicated paths of loading. The possible variations on the

hardening law are endless, and for additional discussion of research on

hardening, the reader is referred to Naghdi (1960).

A second option for specifying the plastic modulus as a function of

stress history is to assume that there are a field of nesting (i.e.,

non- intersecting) yield surfaces in stress space, each of which has a

plastic modulus associated with it (Mroz, 1967, and Iwan, 1967).

Depending upon the loading, a yield surface will translate and/ or change

its size such that its resulting motion may engage an interior or

exterior member of the family of yield surfaces. To avoid intersecting

adjacent members, the active yield surface must follow a Mroz kinematic

hardening rule; this is implemented and described more fully in Chapter
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4. The plastic modulus in the nested surface models varies in a

piecewise linear manner, and has memory of the loading history built

into the current configuration of the yield surfaces. Variations on the

multi-surface approach, including smooth variation of the plastic

modulus, are described in detail in Chapter 4.

2.7.8 Incremental Elasto-Plastic Stress-Strain Relation

When elastic and plastic strain increments are occuring

simultaneously, the constitutive equations must be organized in a

compact but general form for computational purposes. The equation for

the total strain increment (equation 2.4.2) is

de = de + de P
,

and if the test simulation is stress-controlled (i.e., do is input),

both these components can be computed explicitly. Elastic increments

are computed by combining equations 2.6.1.12 and 2.6.1.13,

de®. = de
e

. + 1 de
e

5. .

ij ij -s mm ij

= (ds... * 2G) + I (da
kk

* 3K) 5^, (2.7.8.1)

which may then be put in the alternative form:

de
e

= D
e

da, (2.7.8.2)

Q
where D is the fourth order, incremental, elastic compliance tensor,

"'J"
=

TT# '« *
kl * To "" S^ *

6 " V- (2 - 7 - 8 - 3)

Plastic strain increments are computed from the flow rule (equation

2.7.3.13), and when combined with equation 2.7.8.2, the total strain

increment is

e VG
de = D do + J -_ {_9F:do}. (2.7.8.4)

K
p

|VG| 3o
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If, however, a strain increment was specified, as in a finite

element routine, the inverse of this incremental stress-strain relation

will be needed. The algebraic operations involved in this inversion are

carried out in the following. First multiply both sides of equation

2.7.8. 1J by the inverse of the D matrix or C ,

C
e

de = do + C
e
J_

V S j {3F:do}, (2.7.8.5)

K |VG| |VF| 3a

and if we replace (VG / |VG| ) and (VF / |VF| ) by their unit tensor

notation m and n respectively,

C de = do + C
e

_1_ m {n : do}. (2.7.8.6)
K
P

The next step is to multiply both sides of this equation by the

tensor n,

n : C de = n :do + n : C
e

1 m {n : do},

K
P

and from this result, we find that

Q
1 „ a n: C de
1 n:do = - - ~ .

K K + n:C
e
:m

p p - - ..

which when substituted into equation 2.7.8.6 gives

ne . . (C
e
:m) (n:C

e
)C de = do + - - - - de, (2.7.8.7)

K + (n:C
e
:m)

or

,e , , „e.

dl! - : of .
tc
-

; b> 'g ;

£ '

: d£ . c dE . (2.7.8.8)

K + (n:C
e
:m)

If the flow rule is associated (i.e., m = n), the elastic-plastic

stiffness matrix C is symmetric, but if m is not equal to n (i.e., non-

associative flow) the matrix loses its major symmetry and leads to

increased computation costs in numerical applications. For
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completeness, the independent components of the symmetric elastic-

plastic stiffness tensor C of the incremental stress-strain relation

Cxi C 12 C l3 C llt C ls C l(

C 21 L 22 C 23
C 31 C 32 C 33

^m *"» 2 ^n3 ^i«>* ^s Ci

^si C 52 C S3 C SI| C 55
C 6 1

C 62 C 6 3

are written out in long form:

Cj, = r + 2y + F [(r n
Rk

+ 2 p n lx )
2

]

C 12 = T + F [(r n
Rk

+ 2 y n xl )(r n
Rk

+ 2 y n 22 )]

C 13 = r + F [(r n
Rk

+ 2 y n lx )(r n
Rk

2 y n 33 )]

Cm = F [(r n
Rk

+ 2 y n 11 )(2 y n 23 )]

C 15 = F [(r n^ 2 y n lx )(2 y n 13 )]

C
kk

F [(r n
kR

+ 2 y n xi )(2 y n 12 )]

C 22 = r + 2 y + F [(r n
k[<

+ 2 y n 22 )
2
]

C 23 = r + F [(r n
Rk

+ 2 y n 22 )(r n
kk

+ 2 y n 33 )]

C 2 *
= F [(r n

Rk
+ 2 y n 22 )(2 y n 23 )]

C 25 = F [(r n
kk

+ 2 y n 22 )(2 y n l3 )]

C26 = F [(r n
Rk

+ 2 y n 22 )(2 y n 12 )]

C 33 = r 2 y + F C(r n
Rk

+ 2 y n 33 )
2

]

C,* - F C(T n
kR

+ 2 y n 33 )(2 y n 23 )]

C 3 s
= F [(r n

Rk
+ 2 y n 33 )(2 y n 13 )]

C 36 = F [(r n
kk

2 y n 33 )(2 y n 12 )]
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C„„ = U + F [U (y n 23 )
2
]

C„ s
- F [(2 V n 23 )(2 y n 13 )]

C„ 6
= F [(2 y n 23 )(2 y n 12 )]

C 55 = y + F [4 (y n 13 )
2

]

C 56 = F [(2 y n 13 )(2 y n 12 )]

C 66 = y + F [4 (y n 12 )
2
]

where

F = -
]

.

K
p

* F (n
Rk

)
2

2 y



CHAPTER 3

PROPOSED PLASTICITY THEORY FOR GRANULAR MEDIA

3. 1 Introduction

A constitutive model for sand is proposed within the framework of a

rather special time-independent or elastic-plastic theory recently put

forward by Drucker and Seereeram (1986). In its simplest form, the

material model exhibits no memory of prior plastic deformation, although

modifications can be easily devised to account for more complicated

aspects of real behavior. This elementary form, with no account of

hardening, lies at the extreme end of a spectrum of idealizations where

the conventional work-hardening theories are at the other extreme and

the "bounding surface" type formulations are intermediate.

The key features of the theory as applied to sand are

1

.

The material remains at yield during unloading as well as

loading (Figure 3-1 )•

2. Yielding is defined as any plastic deformation, no matter how

small, and not by the traditional moderate offset or Taylor-

Quinney (1931) definition (Figure 3.2).

3. Material behavior at each state of stress is assumed to be

stable in the small for any direction of motion of the stress

point. This implies that the plastic strain increment (de
P

) is

106
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normal to the yield surface (Figure 3.2) and is calculated as

deP = 1 n (n:do), (3.1.1)
K
P

where K is the plastic modulus, n is the unit normal to the
P

yield surface, and do is the stress increment (cf. equation

2.7.3.12).

4. Unlike many formulations, the consistency condition is

automatically satisfied, and plays no role in the determination

of the plastic modulus K . For the non-hardening version

proposed here, K depends solely on the current stress state,

whereas with the hardening modification, stress history effects

are manifested by the evolution of an independent hardening

control surface. This surface is generally not coincident with

a yield surface.

5. In the simplest version, with no history dependence, the nested

family of yield surfaces and scalar field of plastic moduli do

not change; i.e., there is no hardening and cyclic response is

immediately stable.

6. The yield surfaces are chosen so that the normal to each is

constant in direction along a radial line from the origin

(Figure 3.3).

7. The scalar field of plastic moduli in stress space varies from

a continually increasing maximum plastic stiffness in pure

hydrostatic loading to zero as the stress point approaches a

stationary failure or limit surface (Figure 3.3).
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LIMIT LINE

Figure 3.3 Pictorial representation for sand of the nested set of
yield surfaces, the limit line, and the field of
plastic moduli, shown by the d£p associated with a
constant value of n do (after Drucker and Seereeram,
1986) pq pq
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8. The limit or failure surface is also not a member of the family

of yield surfaces; it intersects them at an appreciable angle

(Figure 3-3).

9. No purely elastic domain of stress exists.

The first part of this chapter describes those aspects of sand

behavior that suggest the use of such an unorthodox theory. Then, using

well-established experimental observations on sand, detailed analytical

forms are tendered for the set of yield surfaces, the scalar field of

plastic moduli (which implicitly defines a limit surface), and the rule

to ensure that the yield surface follows the stress point.

At the outset, it must be emphasized that these selections were not

instituted after a systematic rejection of other alternatives, but they

evolved during the course of development as certain features were

incorporated and others, deemed less important, were deleted. It is

therefore quite possible for a potential user to match data equally well

or even better with an alternative set of choices. The structure of the

theory does not hinge on these details.

After the analytical forms for the yield surface and the field of

plastic moduli are presented, a description of the initialization

procedure follows, with emphasis on the physical significance of each

parameter and its expected variation with initial porosity. All model

constants are then identified with a corresponding stress-strain or

strength parameter (or concept) in common use by geotechnical engineers.

The slope of the zero dilation line (or the friction angle at constant

volume) is taken as independent of initial void ratio as found

experimentally. Each of the other parameters depends only on the

initial density. Two standard laboratory tests specify the material
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parameters: a hydrostatic compression test and a uniaxial compression

test with a small unload-reload loop to assess the elastic properties.

Calculation of each of the eight constants— two elastic and six

plastic— of the simple model is straightforward and can be carried out

expeditiously with the aid of only a hand calculator; the procedure

involves no heuristic, or curve fitting, or optimization techniques. In

fact, if the elastic and plastic strains are already separated and if

typical values for two less critical plastic parameters are chosen in

advance, the procedure will take as little as ten minutes.

A comparison of calculated results and experiments, for a series of

hollow cylinder and triaxial tests over a range of confining pressures

and on materials of different origin and initial density, demonstrates

the realism of the simple idealization for a wide variety of stress

paths.

Two hardening modifications to the simple theory also are

presented. The first is an adaptation of Dafalias and Herrmann's (1980)

bounding surface theory for clays, the key characteristics of which are

i) the largest yield surface established by the prior loading history

acts as a boundary of "virgin" plastic moduli, and ii) a radial mapping

rule is used to locate conjugate points on the boundary surface for

interior stress states. These constitutive equations are implemented in

a finite element routine to solve a boundary value problem of growing

interest in soil mechanics, especially in the field of insitu testing,

and one for which measured data was available: the expansion of a

vertically embedded cylindrical cavity.

Based on the documented behavior of sand, a second more realistic

hardening option is then proposed. It differs from the previous one in
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that i) the hardening control surface does not resemble the yield

surface, and ii) a new interpolation function for the reload modulus is

implemented. The versatility of this novel formulation is explored by

simulating a) the influence of isotropic preloading on an axial

compression test, and b) the buildup of axial strain in a cyclic stress

controlled uniaxial test.

Finally, advantages and limitations of the model are indicated; a

difficulty does arise for somewhat unusual inward loading paths which

start near the failure surface.

3.2 Material Behavior Perceived as Most Essential and Relevant

Those aspects of the behavior of sand (or of any material) that are

identified as key aspects will vary greatly with the problems of prime

interest. Furthermore, any representation of the actual complex

inelastic behavior of a material is a matter of background and taste.

Drastic idealization is necessary and so tends to be controversial even

in those rare instances when ample experimental data are available.

For example, in the consideration of geomaterials, just as for

metal polymers and composites, the simplest model suitable for generally

increasing load will differ radically from the simplest model suitable

for cyclic loading between fixed limits of stress or strain. The

simplest model that covers both types of loading will not match some

aspects of each very closely.

Adequacy of representation clearly is a matter of viewpoint and

judgement. The aspects selected here as the key aspects of the

inelastic behavior of sands are
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1. The existence of an essentially path- independent (stationary)

limit or failure surface that bounds the reachable states of

stress (Figure 3.4). This surface more or less resembles the

Mohr-Coulomb criterion on the octahedral plane, but it may

exhibit some degree of curvature (or deviation from a pure

friction criterion) on meridional (or q-p) sections. Studies

by Wu, Loh, and Malvern (1963), Bishop (1966), and more

recently, by Matsuoka and Nakai (1974), Lade and Duncan (1975),

Desai (1980), and Podgorski (1985) are among the many on which

this assumption is based.

2. A generally outward path of loading from a state of hydrostatic

pressure to the limit or failure surface will induce inelastic

volume contraction to start. The incremental inelastic volume

change will go to zero at a stress point fairly close to but

clearly below failure. Then as the stress increases toward

failure (peak stress) in a stable manner, there will be

appreciable continuing dilation. The stress-strain data of

Figure 3.5, taken from a recent conference paper by Hettler et

al. (1984), illustrates this phenomenon for axial compression

tests on sand specimens over a range of initial densities.

3. The response to partial unloading is dominantly elastic, while

the response to reloading is dominantly inelastic as well as

elastic (Figure 3.6). It is this inelastic response on

reloading at stress levels (defined by q/p) below those reached

on the prior loading that led many years ago to proposals of

nested set of yield surfaces with an innermost surface of small

diameter and more recently to bounding surface models.
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Figure 3.5 Axial compression stress-strain data for Karlsruhe
sand over a range of porosities and at a constant
confinement pressure of 50 kN/m 2 (after Hettler et al

,

1984)
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STRESS RATIO q/p
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-1.0 L

2.0

STRESS RATIO q/p

Figure 3.6 Stress-strain response for a cyclic axial compression
test on loose Fuji River sand (after Tatsuoka, 1972)
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4. The inelastic response in subsequent extension testing is not

altered much by moderate prior inelastic deformation in the

compression test regime, as the data of Tatsuoka and Ishihara

(1974a) in Figure 3.7 suggests.

5. The ratios of the components of the increments of inelastic

strain remain fairly constant along each radial or proportional

(q/p - constant) loading path in stress space. Data presented

by Poorooshasb et al. (1966) (Figure 3.8), and Tatsuoka (1972)

substantiate this contention. Implicit in this premise is the

existence of a radial, path-independent zero dilation line, and

experimental studies by Kirkpatrick (1962) and Habib and Luong

(1978) have confirmed the existence of such a line.

6. At a given stress point, the ratios of the components of the

inelastic strain increments are the same for all outward

loading paths through the point (Poorooshasb et al., 1966)

(Figure 3.9). This aspect of sand behavior has not always been

found. For example, in comparing constant pressure shear paths

and radial loading paths, Tatsuoka (1972) noticed some degree

of stress path influence on the direction of the plastic strain

increment. But this divergence he found was more pronounced at

lower (and thus less critical) stress levels.

7. Except at very high magnitudes of stress where particle

crushing becomes important, the stress-strain response of sand

in hydrostatic compression is of the "locking" type: the

incremental pressure-volume response becomes stiffer with

increasing levels of bulk stress (Figure 2.2).
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Figure 3.7 Medium amplitude axial compression-extension test on
loose Fuji River sand (after Tatsuoka and Ishihara,
1974a)
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8. At a constant all-around pressure, the overall stiffness of the

sand decreases as the Intensity of the shear stress increases.

Much of the recent literature on constitutive relations for

granular media, quite appropriately, is devoted to the proper

characterization of the state of the material and the change in state.

However, as a first approximation, the simple form of the proposal

implemented here postulates that the state of the material is unchanged

by the inelastic deformation. This hypothesis is a special case of what

Cherian et al . ( 1 949) , in their study of commercially pure aluminium,

termed orthorecovery: the reloading curve, for the uniaxial case, is

finitely displaced from and parallel to the original curve (Figure

3.10).

In the application to sands, such a formulation does automatically

give those key aspects of the inelastic behavior labelled 3, 4, and 6.

Simple and approriate choices of the scalar field of plastic moduli and

the field of yield surfaces permit matching the failure surface (aspect

1) and produce the type of inelastic behavior labelled 2, 5, 7 and 8.

3.3 Details of the Yield Function And Its Evolution

The analytical representation of the yield surface is guided

strongly by experimental observations, and to a lesser extent by some

certain very helpful mathematical simplifications. But before going

into these details, it is instructive to remind the reader that

yielding, in this context, is the existence of a plastic strain

increment vector (Figure 3.2) no matter how small and is not defined by

the traditional offset or Taylor-Quinney (1931) methods.
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<T,T

e,y

figure 3.10 Successive stress-strain curves for uniaxial stress
or shear are the initial curve translated along the
strain axis in simplest model (after Prucker and
Seereeram, 1986)
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3.3.1 Isotropy

The soil is assumed to be isotropic, and thus the yield function

may be expressed solely in terms of the stress invariants. A

cylindrical coordinate system in Haigh-Westergaard (or principal) stress

space is particularly attractive because a simple geometrical

interpretation can be attached to each of the following invariants:

Ii = o
kk

=3 P, (3.3.1.D

/J 2 - /O s s ) = q//3, and (3.3-1.2)
p J J

S = sin"
1

[ 0l + q 3
- 2 q 2 ], - 30° i 9 i 30° . (3-3.1.3)

2 /(3 J 2 )

These invariants were defined previously in equations 2.2.2.22,

2.2.2.26, and 2.2.2.39 respectively, and are repeated and renumbered

here for easy reference.

With such an isotropic representation, the general six dimensional

form of the yield surface simplifies to (cf. equation 2.7.2.3)

Fdi, /J 2 , 6) = 0. (3.3.1.4)

This depiction is reduced further to two dimensions by normalizing

/J 2 with a function of e, say g(6), to obtain a modified octahedral

shear stress,

/J 2 = /J 2 / g(e) = q*//3. (3-3-1.5)

The function g(e) is such that g(30°) = 1 and it determines the shape of

the ir-section. For instance the Mohr-Coulomb relation, equation

2.7.2.5, gives

g(6) = cos(30°) - {[sin(30°) sin <j)]//3} ,

cos e - [(sin 9 sin <j>)//3]
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which defines a straight line with corners occuring at 6 = ±30° as shown

in Figure 2.9. To avoid these corners, continuous functions are chosen

such that

dg(e) =0 at 9 = ±30°.

de

Such functions can be written in polynomial or trigonometric form.

Taking g(30°) = 1 and g(~30°) = R, Willam and Warnke (1974) suggest an

elliptic expression of the form

g(6) = (1-R 2
) A + (2R-1) /[(2+BH1-R 2

) + 5R 2 - jtR] (3.3-1.6)

(2+B) (1-R 2
) + (1-2R) 2

where

A = /3 cos .6 - sin 9,

B = cos 26 - /3 sin 28,

and R specifies the ratio of the radius [/(2J 2 )] in extension to that in

compression. For convexity, R must lie in the range

0.5 ^ R S 2.

Selecting

R = 3 - sin <j> (3.3.1.7)

3 sin <j>

in the function g(6) ensures that the smooth deviatoric locus matches

the Mohr—Coulomb criterion in compression and extension. Equation

3.3.1.7 may be derived directly from equations 2.7.2.9 and 2.7.2.10.

Although this choice is made here for convenience, other magnitudes of R

may generally be determined from experiment. Furthermore, observe that

with R = 1, the yield surface becomes a Drucker-Prager (1952) or

extended von Mises criterion.

A simpler alternative to equation 3.3.1.6 was proposed by Gudehus

(1973),
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g(e) = 2R
, (3.3.1.8)

(1+R) - (1-R) sin 36

but this function suffers from the unrealistic constraint that R must be

greater than 0.77 (or $ < 23°) to ensure convexity.

With the introduction of this modified second invariant /J 2 , the

form of the isotropic yield surface is now written as

F(I 1( /J*) = 0. (3-3.1.9)

3.3.2 Zero Dilation Line

An important aspect of the theory is the existence of a zero

dilation radial line in /J 2 -Ii (or q -p) space, say of slope N in /J 2-l!

space,

1^2 = N. (3.3.2.1)

Ii

Ascribing special significance to this locus is not without merit

because many laboratory investigations on the behavior of sand have

confirmed its existence. Perhaps most noteworthy, Habib and Luong

(1978) and Luong (1980), using a number of careful experiments, have

studied this phenomenon which they termed the "characteristic state." It

is similar and probably identical to the "phase transformation line"

observed by Ishihara et al. (1975) in saturated undrained experiments.

From their extensive tests, Habib and Luong (1978) concluded that

the characteristic state of a soil is associated with

1 . a zero volumetric strain rate (e, ,
= 0) .kk '

2. a unique stress level (q/p) where net interlocking ceases and

effective disruption of interlocking starts,

3. a relatively low distortion deformation (e),
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4. an independence of the initial porosity and the grain size

distribution, and

5. an absence of the influence of fabric anisotropy and stress

history.

In addition, their data shown in Figure 3.11 suggests that the

projection of the characteristic state curve on the q-p plane is

practically a straight line passing through the origin of stress space,

even though the limit envelope may be highly non-linear along the

pressure axis. This may be verified by locating the points on the

volumetric strain vs. axial strain plots (bottom of Figure 3.11) where

the incremental volumteric strain is zero and then finding the

corresponding points on the o x /a 3 vs. axial strain plot at the top of

Figure 3.11; these zero dilation points all approximately give the same

stress level (oi/o s ). Other data presented by Habib and Luong (1978)

suggests that the deviatoric variation of the zero dilation line

mathematically built into equation 3.3.2.1 does not agree with reality.

This equation suggests that the mobilized friction angles at the point

of zero dilatancy in compression and extension are the same, or that the

deviatoric traces of the zero dilation and the failure loci are

concentric. Figure 3.12 presents data from Habib and Luong* s (1978)

paper which indicates this is not strictly true: $ = 24.6° in extension

vs. 32.5° in compression. If in later applications this turns out to be

a serious limitation of the model, it may be very easily remedied by

selecting an experimentally determined magnitude of R to normalize the

*
zero dilation line in /J 2 -Ii stress space and another magnitude to

normalize the failure locus. Such an improvement will require at least

one additional material parameter.



128

nd

68x104 N/m3

Figure 3.11 Constant q/p ratio (as given by constant O1/O3 ratio)
at zero dilation as observed from axial compression
stress-strain curves on dense Fountainbleau sand.
Note that the peak stress ratio decreases with
increasing pressure (after Habib and Luong, 1978)
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q/p
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<J>
= 32.5°

1.31—{-i-frj 1__
A
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1 ^
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• •

<t>
= 24.6°

Figure 3.12 Characteristic state friction angles in compression
and extension are different, suggesting that the Mohr-
Coulomb criterion is an inappropriate choice to model
the zero dilation locus (after Habib and Luong, 1978)
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For comparison, the differences between the concept of

characteristic state and the more familiar critical state concept

(Schofield and Wroth, 1968) are highlighted in Table 3.1.

Two analytic functions are used to describe the yield surface: one

for the region below the zero dilation line, in the sub-characteristic

domain, and another for the region between the zero dilation line and

the limit line, in the super-characteristic domain. These two portions

of the yield surface are chosen to be continuous and differentiable at

the zero dilation locus.

3.3.3 Consolidation Portion of Yield Surface

From the isotropy assumption, pure plastic volumetric strain must

be predicted for an isotropic compression path. Therefore, a smooth

yield surface must intersect the hydrostatic axis perpendicularly, and

by a similar reasoning, it must also be parallel to the hydrostatic axis

at the zero dilation line.

Figure 3-13 shows plots of smooth yield surfaces back-fitted from

the trajectory of plastic strain increments observed from a series of

axial compression tests on Ottawa sand (Poorooshasb et al . , 1966).

Guided by these pictures, the meridional section of the yield surface

#
below the zero dilation line (/J 2 /Ii £ N) was chosen to be an ellipse

F = If - 2 (I /Q) I, + [(Q-D/N] 2 J* + I
2

C(2/Q)-1] = 0, (3.3-3.1)

where I is its point of intersection with the I, axis, and Q is a

parameter which controls the major to minor axis ratio of the ellipse.

Figure 3.14 shows a plot of this yield surface in q -p space; note the

mathematical interpretation of the parameter Q in this figure. Figure

3.15 gives an alternate view of the yield surface on the triaxial plane
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Table 3.1 Comparison of the Characteristic State and Critical
State Concepts

CHARACTERISTIC CRITICAL
PROPERTY STATE STATE

1. Volume variation e =0 at any qv J M e = at q =

2. Shear Strain, e low indeterminate
(prior to failure) (at failure)

3. Deformation small large

4. Void Ratio (e) any e e
critical

5. Grain Structure maximum
"locking" effect

uncertain

6. Loading monotonic or cyclic monotonic,
asymptotic

7. Behavior transitionary asymptotic

3. Definition threshold demarcating idealized
contractancy and concept of

dilatancy domains soil

9. Experimental direct therefore easy by extrapolation
Determination therefore

delicate
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Figure 3.13 Establishment of the yield surfaces from the

inclination of the plastic strain increment observed
along axial compression paths on Ottawa sand at
relative densities of (a) 39% (e=0.665), (b) 70%
(e-0.555), and (c) 94% (e=0.465) (after Poorooshasb
et al., 1966)
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with material reference coordinates. This choice of the yield function

is by no means original. Roscoe and Burland (1968) derived a particular

form of this equation for their modified Cam-Clay theory in which the

parameter Q was fixed at a magnitude of two so that

F - I? - I, I x (1/N) 2 J* = 0. (3.3.3.2)

However, in this work, Q is retained as a material parameter to enhance

the simple model's ability to predict the compaction phenomenon.

Magnitudes of Q reckoned from Poorooshasb' s plots (Figure 3.13) are

1.75, 1.77, and 2.06 for Ottawa sand at 39$, 70%, and 9W relative

density respectively, so if only a crude estimate is desired, it is not

unrealistic to assume Q = 2. Theoretically and in general, however,

1 * Q * -• (3.3.3.3)

3-3.4 Dilation Portion of Yield Surface

The yield surface's meridional segment above the zero dilation line

intersects the limit or failure curve at an angle which has no obvious

physical basis (Figure 3-3). This angle plays no role in theory and

therefore offers no useful mathematical link between the yield surface

and the limit surface. Nevertheless, the limit line does serve to

delineate the real from the unreachable part of the dilation portion of

the yield surface since the analytical form of the yield surface does

not terminate abruptly at the limit line. In Figure 3. 14, the real part

of the dilation portion of the yield surface is the solid curve bounded

by the zero dilation and limit lines, while the unreachable part is the

dashed portion beyond the limit line.

A second order polynomial in /J 2 -Ii stress space was developed

specifically for this portion of the surface. Constraints were imposed
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to ensure that i) the surface passes through the origin of /J 2
- I I

stress space at a specified slope S, and ii) its first partial

derivatives merge continuously with the half-ellipse at the zero

dilation line. The first requirement is an artifact of an earlier phase

in the study (Seereeram et al., 1985) when it was thought that the

slopes of the limit line and the yield surface should coincide at points

on the limit line. However, in the version here, the slope S is fixed

at a slope much steeper than the limit line to give more leverage in

choosing the dilation portion of the yield surface to model plastic

flow.

The proposed yield surface for the dilation domain (/J^Ii > N) is

F = If + b J 2 + [S_ - 2_ - S b] Ii /J* +

N 2 N

(I /Q) [J_ - bN ] [/J* - S IJ - 0, (3.3.4.1)

N

where b is a dimensionless material parameter. A detailed derivation of

this equation and the restriction on the parameter "b" are presented in

Appendix A.

From limited experience with this new yield surface, a preselected

magnitude of S equal to 1.5 appears to work well. For reference, note

#
that the slope of the limit line (/J^Ii at failure) is typically in the

range 0.20 to 0.35.

The constant b is constrained to be less than 1 , and the

N 2

discriminant of equation 3.3.4.1,

[S - 2 - Sb] 2 -4b, (3.3.4.2)

N 2 N
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identifies the canonical form of the surface. With S = 1.5, the

back-computed dilation portion of the yield surface usually turns out to

be elliptical.

For completeness, the yield surface gradient tensor equations are

included in Appendix B.

3.3.5 Evolutionary Rule for the Yield Surface

To remain at yield during loading and unloading, the yield surface

is assumed to contract and expand isotropically to stay with the stress

point. This rule was selected because it produces many desirable

features, among which are

1. successive yield surfaces remain similar, as the data of Figure

3.1 3 suggest;

2. a unique zero dilation line is preserved for all loading paths,

and more generally, the ratio of the components of the plastic

strain increment vector remain constant for radial lines;

3. mathematical tractability; and

4. it can be readily modified to give "bounding surface" type

hardening rules.

Since, in this theory, no elastic domain is postulated, plastic

strains can occur at any stress level, and there are no restricted (or

elastic) zones to impede the movement of the yield surface. The size of

the yield surface is given by its intersection I with the hydrostatic

axis (Figure 3.14). Once the current state of stress is known, I can

be solved for directly from equation 3-3.3.1 if the stress point is

below the zero dilation line, or from equation 3.3.4.1 if it is above.

Thus, in effect, the consistency condition is automatically satisfied.

If it is postulated that the yield surface does not follow the stress
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point on unloading, this evolutionary rule degenerates to that of a

conventional stress-hardening theory of plasticity.

The equations for updating I are presented in Appendix C.

3.4 Choice of the Field of Plastic Moduli

The expected magnitude and variation of the plastic modulus along

three lines in /J 2-Ii stress space dictated the choice of the field of

plastic moduli:

1. the hydrostatic axis,

2. the zero dilation line, and

3. the failure or limit line.

Each of these three loading paths is now explored in sequence.

Consider a pure hydrostatic or spherical loading on an isotropic

material with a yield function F(/J 2 , Ij = 0. Since such a path must

produce only volumetric strain, 3F/3Ij is the only non-zero gradient

component, and the flow rule (equation 3.1.1) therefore specializes to

de^
k

= 1 3F/3I
X (3F/8I! dIJ - 1 dl t . (3.4.1)

K (3F/3IJ 2 K
P P

A comparison of this equation with its elastic analogue (equation

2.6.1.12),

d< k = J_ % k
,

3 K

shows that the plastic modulus K is analogous to three times the

elastic bulk modulus (K) for hydrostatic compression.

Following a similar development, we find that at a point of zero

dilation,

3F/3I,, = 0,
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3F/9/j 2 + 0,

and therefore

, p , 9F/9/j 2 s. . (9F/9/j 2 ) (s ds ) , s . . s ds
de£ =

J

2 ij mn mn = 1_ ij mn mn ,

K 4 J 2 (3F/3/j 2 )
2 K 2 J 2

from which we then see that

/U dej dej ) = 1

S
mn mn = 1 d(/J 2 ),

2 K 2 /J 2 K
P P

or

de p
= /(3 dej.dej.) = 1_ dq. (3.4.2)

2 K
P

Comparing this equation with its elastic analog (equation 2.6.1.13)

shows that K is comparable to twice the elastic shear modulus (G) at

the zero dilation line. Mathematically, this means that at the point of

zero dilatancy

i_ = _J L« (3.4.3)

K dq/de 2 G
P

where dq/de is the tangent modulus. Note that this is a general result

not contingent on any particular choice of the yield surface.

The final case considers the magnitude of the plastic modulus at :

the failure line. At this locus, the material fails in the sense that

the incremental plastic strains are supposedly "infinite." Therefore,

in order to approach asymptotically this response at the limit state,

the plastic modulus must approach zero at all points on this line (see

equation 3.1-1).

The plastic modulus functions as a bulk modulus for hydrostatic

loading, a shear modulus at the zero dilation line for shear loading,

and a "failure" modulus (zero) on the limit surface.



141

With this background, a specific form is now derived for the

plastic modulus on the hydrostatic axis, and an interpolation rule is

then adopted to model its approach to zero at the limit surface.

The plastic modulus on the hydrostatic axis increases with mean

pressure. A familiar pressure-volume relationship along this axis is

assumed (cf. equation 2.7.6.7)

I, = (I 1 )
i

exp (A e£
k
), (3.4.4)

where (I x ). is the magnitude of I j at the start of a virgin hydrostatic

loading, and X is a plastic stiffness constant. Soils engineers will

recognize this equation as an alternative statement of the typical

linear voids ratio vs. log mean pressure relationship. In incremental

form

dl 1 = (I 1 )
i

X de^ exp(X e£
k

) = X I, de£
k

, (3.4.5)

which, by comparison with equation 3.4.1, shows that the plastic modulus

K is equal to X I x-, a linear stress- dependent function.

It is reasonable to expect the plastic stiffness to decrease

monotonically from its bulk modulus magnitude (X I x ) on the hydrostatic

axis to zero on the fixed limit surface

f(a) = k . (3.4.6)

A simple and not unreasonable rule for this decrease is

K
p

- X I x {1 - [f(o)/k] }

n
, (3.4.7)

in which the exponent "n" is regarded as a material constant.

Geometrically, this interpolation function forces the equi-plastic

modulus loci on the octahedral plane in principal stress space to

resemble the ir-section of the selected failure criterion f(a). As will

be described later in the initialization procedure, the observed plastic
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(shear) modulus at the zero dilation line provides the necessary

information for computing the exponent "n" directly.

Any desired frictional failure criterion f (o) may be inserted in

equation 3.4.7. The form chosen here is

/Jg - k. (3.4.8)

Ii

Because one of the sands used in the evaluation had a significantly

curved (along the pressure axis) failure envelope, the straight line

representation was modified to

If m
/J* (Ii/P

a ) = k, (3.4.9)

Ii

to allow for non-linear pressure dependence. The exponent "m" in this

equation is a material parameter that describes the degree of curvature,

and pa
is atmospheric pressure in consistent units. The modifying

,m
factor (I x /p ) was proposed by Lade (1977). So, in general, ta

wo

parameters, "k" and "m", characterize the strength of the material, but,

as discussed earlier, the parameter "R" in equation 3.3.1.6 may also be

considered a model constant if no a priori assumptions are made about

matching the compression and extension radii with a Mohr-Coulomb or any

other criterion.

3.5 Elastic Characterization

Two elastic stress-strain relations are employed. The simpler

idealization is used for simulations within a limited range of mean

stress, while -the more complicated option is used for stress paths which

cover a wider range.
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In the first alternative, the elasticity of the material is assumed

to be isotropic and linear, while anisotropy and nonlinear effects are

attributed to plastic deformation. The incremental elastic

stress-strain relation is

de
kk

= da
kk

/ (3 K) ' and (3.5.1)

de
e

= ds / (2 G), (3.5.2)

where K and G are the elastic bulk and shear moduli respectively, and

e
:

kk

e e
de and de are the trace and deviatoric components respectively of the

e
elastic strain increment de .

For the second more complicated option, it is assumed that i) the

material is elastically isotropic, and ii) the Young's modulus E depends

on the minor principal stress o 3 as proposed by Janbu (1963). That is,

E = K
u

pa
(o 3 /pa

)

r
(3.5.3)

where K is a dimensionless modulus number, and r is an exponent to

regulate the influence of o 3 on E. As suggested by Lade (1977),

Poisson's ratio v for sands is assumed equal to 0.2.

It is recognized that these elastic stress-strain relations are the

simplest of choices, and if a more complete elastic characterization of

sand is desired, degradation effects and shear stress dependency must

also be included. Examples of these more sophisticated elastic

idealizations have been presented by Ghaboussi and Momen (1982) and

Loret (1985).

3.6 Parameter Evaluation Scheme

A hydrostatic compression test and an axial compression test

furnish the data to initialize the simple model. But, since it is

customary to consolidate hydrostatically a specimen prior to axial
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compression, one such set of experiments can provide the necessary

calibration data. Quite naturally, the initialization procedure will

require more tests if certain aspects of the simple model are to be

improved. For example, if the stress-dependent elastic characterization

or the curved failure envelope options are included, data must be

obtained from a series of, say, three axial compression tests over an

appropriate range of confining pressures. Furthermore, if precise

matching of the failure or the zero dilation locus on the deviatoric

plane is warranted, an axial extension test or equivalent will also be

needed.

Before going into the details of the parameter evaluation scheme,

this is an ideal juncture to emphasize an important innate aspect of the

simple theory: if the failure envelope is a straight line, the

representation predicts exactly the same plastic strains for parallel

stress paths which all emanate from points on the hydrostatic axis.

Therefore, for instance, the theory will predict identical q/p vs. e

(or q/p vs. e ) curves for a series of conventional axial compression

paths covering a range of confining pressures. Data will be presented

later which demonstrates this intrinsic trait of the simple theory.

Material parameters are divided into three conceptually distinct

groups:

1. The elastic constants: K and r , or K and G.
u

2. The plastic stiffness/strength parameters which serve to define

the scalar field of plastic moduli: X, n, and k.

3. The parameters governing the shape of the yield surface, or

alternatively, the parameters governing the direction of the
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plastic strain increment vector (n. . ) and the extent of plastic

loading (n. .da. .): N, Q and b.6 ij ij

3.6.1 Elastic Constants

The elastic Young's modulus is determined from an unloading segment

in the axial compression test,

E = (1 + v) Aq, (3.6.1.1)

Ae

—

e

where Aq is the deviatoric load reduction, Ae is the recoverable (or

resilient) shear strain, and v is Poisson's ratio assumed equal to 0.2.

For the more complicated option in which E depends on the minor

principal stress (equation 3.5.3). the modulus exponent r and log (K )

are the slope and intercept respectively of a straight line fit to a

plot of log (E/p ) vs. log (a 3 /p ). This data is most conveniently
3 3.

obtained from the unloading loops of a series of axial compression tests

at different levels of confining stress (o 3 ).

3.6.2 Field of Plastic Moduli Parameters

The parameter X is matched to the stiffness of the material in

hydrostatic compression (equation 3.4.4). It is simply the slope of a

plot of log [Ii/(Ii),] vs. eP. for an isotropic consolidation test, or

in terms of conventional geotechnical parameters,

X = log
e
(10) 1 + e , (3.6.2.1)

C - C
c s

where e is the initial voids ratio, and C and C are the compression

and swell indices respectively. As an aid in separating the elastic and
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plastic volumetric strains, note that direct integration of equation

3.5.3 gives

e 3 (1 " 2 v) (p )

r_1
r 1-r 1-r -, #,<«„%£

kk " 1* IP " Pinitial^ (3.6.2.2)

K
u

(1-r)

for a hydrostatic compression path.

The strength parameter k is the peak stress ratio /Ja/Ii determined

from an axial compression or any other shear path to failure. In terms

of more familiar strength constants,

3 /3 k = (Q/P) peak
= 6 sin *

c
/(3" sin <j>

c
), (3.6.2.3)

where $ is the friction angle computed from a compression test (cf.

equation 2.7.2.9)

.

If the curved failure surface option is used, the exponent m and

log (k) are the slope and intercept respectively of a straight line fit

to a plot of log (/Ja/IJ^ . vs. log (p /I x ) for a number of tests.
pG 3.K 3.

At the point of zero dilatancy on the q/p vs. e stress-strain

curve, a) the mean stress p, b) the stress ratio q/p, and c) the tangent

modulus dq/de are used to compute the slope of the zero dilation line,

N = (q/p) (at de£
k

= 0). (3.6.2.4)

3 /3

The result is then combined with p and K (computed from

deJ-0 P dej =0
kk ' kk

equation 3.4.3) to calculate the exponent n of the interpolation

function as

n = log (K
p
/3Ap) * log (1 - N). (3.6.2.5)

k

Choosing n exactly as given in this equation guarantees that the plastic

stiffness at the zero dilation line will be matched. But in order to

obtain a better overall fit to the data, it may be desirable to alter
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this constant somewhat. In equation 3.6.2.5, K /3Ap is the ratio of the

plastic stiffness at the zero dilation line to that on the hydrostatic

axis. For a given N/k ratio, the exponent n may be interpreted as a

measure of the stiffness of the stress-strain curve. Higher magnitudes

of n produce a softer response.

3.6.3 Yield Surface or Plastic Flow Parameters

The constants Q and b (with a preselected slope of S = 1.5) govern

the direction of the plastic strain increment. For a compression shear

test [g(e) = 1],

X = /3 de£
k
/de P

= 6 ( 9F/9I J/ (3F/9/J*)

.

(3.6.3.D

Substituting the explicit forms of the partial derivatives for the

consolidation surface (listed in Appendix B) into this identity gives

1 - 2 [1 - z (Q - 1)
2
] + (Q-l) 2

z
2 +

6 x N 2 N 2

[1 - (Q - 1)
2

z ]
2 (2Q - Q

2
) = 0, (3.6.3.2)

6 x N 2

where z is the mobilized stress ratio /Jj/Ij. Similarly, for the

dilation surface, it can be shown that

b = 1 [6 x (2z - S + C z
2

) + C S + 1], (3.6.3.3)

(z-S) 2

where

C = [(S/N 2
) - (2/N)].

Therefore, by recording the pointwise incremental plastic

volumetric/ shear strain ratio x and the corresponding mobilized stress

ratio z along an axial compression path, the parameter b can be solved

for directly using equation 3.6.3-3, while Q must be solved for

iteratively from equation 3.6.3.2. The back-computed magnitudes of Q
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and b have been found not to change much from point to point indicating

that reasonable choices were made for both portions of the yield

surface.

3.6.4 Interpretation of Model Parameters

An attempt is made in Table 3.2 to attach the simplest possible

geotechnical interpretation to each model constant. Table 3.3

summarizes the likely trends in the magnitudes of these parameters with

increasing relative density. Later, in the evalutaion of the model,

there will be an opportunity to compare these expected trends with

calculated parameters for a range of densities.

3.7 Comparison of Measured and Calculated Results Using the Simple Model

Three data sets are used to demonstrate the range of applicability

(in terms of the loading paths) of the simple model. First, a recent

series of hollow cylinder tests reported by Saada et al. (1983) is used

to assess the model performance along different linear monotonic paths.

Each of these paths emanate from the same point on the hydrostatic axis

(p= 30 psi) and move out in principal stress space at different Lode

angles (e), while the intermediate principal stress or the mean

presssure is held constant.

The second test sequence was extracted from a recent paper by

Hettler et al. (1984). It consists of a comprehensive series of axial

compression tests on sands at different densities and all-around

pressures. This data is considered very reliable because it has been

reproduced by other researchers using alternative testing devices (see,

for example, Goldscheider, 1984, and Lanier and Stutz, 1984). Since



149

Table 3.2 Simple Interpretation of Model Constants

MODEL PARAMETER GEOTECHNICAL INTERPRETATION

k Friction angle, <j>

m Degree of curvature of the Mohr-Coulomb failure
envelope

N Friction angle at constant volume, <j>

X Slope of voids ratio (e) vs. log mean stress (p)

plot, or compression index

b Magnitude of positive angle of dilation [see
Rowe (1962) for a development of the theory of

stress-dilatancy]

Q Magnitude of negative angle of dilation

K^ and r Elastic constants which vary with confining
pressure

n Stiffness of the shear stress-shear strain
(q vs. e) curve.
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Table 3-3 Expected Trends in the Magnitude of Key Parameters With
Relative Density

PARAMETER EXPECTED TREND WITH INCREASING RELATIVE DENSITY

Q increases, implying less compaction per unit shear
strain

b increases, implying greater dilatancy per unit shear
strain

N unchanged, as implied by characteristic state theory

n decreases slightly, modelling a less ductile response

k increases, higher strength due to greater degree of

interlocking

m increases, deviation from pure frictional behavior
becomes more pronounced as interlocking contribution to
shear resistance increases

A increases, stiffer response in hydrostatic compression
due to denser configuration of particles

K increases, stiff er elastic response because denser
packing results in lower inter- particle contact stresses

r decreases, lower interparticle contact forces result in

a smaller fraction of the granules being crushed
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these tests covered a wide range of densities, it was also possible to

compare the calculated material parameters with the trends suggested in

Table 3-3.

Thirdly, a comparison of measured and simulated response for a

special series of load-unload-reload stress paths (Tatsuoka and

Ishihara, 1974a and 1974b) shows, at least in a qualitative sense, the

realistic nature of the simple representation for much more complicated

stress histories.

3.7.1 Simulation of Saada's Hollow Cylinder Tests

Figure 3.16 depicts the state of stress in a typical hollow

cylinder device. All tests paths were stress controlled and were either

constant intermediate principal stress (i.e., constant o =o ) or
r 9

constant mean pressure shear paths. Fifteen trajectories were

considered in principal stress space. When dealing with such an

assortment of stress paths, it is always convenient to introduce a

compact but unmistakably clear notation, and Saada's (Saada et al .

,

1983) convention is adopted here. The letters "D" or "G" appear first

in the test designation and they refer to loading conditions with

constant intermediate principal stress or constant mean stress

respectively. The letters "C" or "T" follow and they indicate whether

the axial stress (a ) was in relative compression or tension

respectively. If a shear stress (x _) was applied, the letter "R" is
zu

appended to "C" or "T." The number which comes after the letters is the

fixed angle (in degrees) between the major principal stress (<jj and the

vertical (or z) direction; this is shown as the angle 6 in Figure 3.17.

These angles were nominally 0° [with Lode angle 9 = 30° (compression
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Figure 3.16 Stress state in "thin" hollow cylinder
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tests)], 15° (9 = 27°), 32° (6 = 15°), 45° [6 = 0° (pure torsion)], 58°

(6 -15°), 75° (6 - -27°), and 90° [8 = "30° (extension tests)]. So,

for example, a GTR 58 test is one in which a) the incremental

application of the stress components ensures no change in mean stress

(G) , b) the axial stress is in tension relative to the initial

hydrostatic state (T) , c) a torque is applied (R), d) the angle between

Uj and the vertical axis is constant and equal to 58 degrees (Lode's

parameter 9 - -15°). Wherever possible, the more familiar test path

nomenclature of Figure 2.3 is juxtaposed with this specialized test

designation. Figure 3.17 depicts the trajectories of these shear paths

in Mohr's stress space, and with reference to Figure 2.3, all test paths

are included except the CTE.

Reid-Bedford sand, at a relative density of 75%, was the material

tested in all experiments. Its physical characteristics have been

described elsewhere (Seereeram et al., 1985).

In accordance with the recommended initialization procedure, all

but the elastic parameters were determined from the axial compression

and hydrostatic compression paths of Saada' s series of tests. The

elastic constants had to be estimated from Linton's (1986) unloading

triaxial tests because Saada monotonically sheared (to failure) all of

his specimens. Two solid cylindrical axial compression tests, at

confining pressures of 35 and 45 psi, were also extracted from Linton's

thesis to supplement Saada' s data.

Table 3.4 lists the computed parameters. Figures 3.18 and 3.19

show the measured and fitted response for the hydrostatic compression

and axial compression paths respectively. Very close agreeement is

observed in both cases. Figures 3.20 and 3.21 show measured and
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Table 3.4 Model Constants for Reid-Bedford Sand at 75$ Relative
Density

PARAMETER MAGNITUDE

Elastic Constants

Modulus number, K 2400

Modulus exponent, r 0.50

Yield Surface Parameters

Slope of zero dilation line, N 0.218

Shape controlling parameter of consolidation
portion of yield surface, Q 2.6

Shape controlling parameter of dilation
portion of yield surface, b 15.0

Field of Plastic Moduli Parameters

Plastic compressibility parameter, A 280

Strength parameter, k .300
(note: no curvature in failure meridian assumed)

Exponent to model decrease of plastic modulus, n 2

Note: all plastic parameters were computed from the monotonic
hydrostatic and axial compression (§30 psi) experiments of Saada
et al. (1983). The elastic constants were computed from the data
of Linton (1986).
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Figure 3.17 Saada's hollow cylinder stress paths in Mohr's stress
space (after Saada et al., 1983)
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Figure 3.18 Measured vs. fitted response for hydrostatic
compression (HC) test using proposed model
(p„ = 10 psi)
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Figure 3.19 Measured vs. fitted response for axial compression
test (DC or CTC of Figure 2.3) 030 psi using
proposed model



158

-ooanno a a a a

0.00 0.02 0.04 0.06 0.08 0.10 0.12
SHEAR STRAIN

RESPONSE :

. 005H
PREDICTED dqdMEASURED

Figure 3.20 Measured vs. predicted response for axial compression
test (DC or CTC of Figure 2.3) (335 psi using
proposed model
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Figure 3.21 Measured vs. predicted response for axial compression
test (DC or CTC of Figure 2.3) ^45 psi using
proposed model
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predicted response for the axial compression paths on the solid

cylindrical specimens at confining pressures of 35 and 45 psi

respectively. Again the correspondence is good. However, it appears

that the observed volumetric compression in the solid cylinder tests is

slightly less than that recorded in the hollow cylinder test (see Figure

3.19).

Predictions for the RTC and TC stress paths (of Figure 2.3) are

given in Figures 3.22 and 3.23. Although the predictions here are not

as precise as the previous axial compression' paths , they are

satisfactory considering the radical departure from the axial

compression trajectory used in fitting the parameters.

Lode's parameter 6 in all of the previous experiments were the same

(e = 30°). When the stress path moves on another meridional plane, as

shown by the prediction of the axial extension test (6 = -30°) in Figure

3.24, the agreement is far less impressive. Even though the strength

asymptote appears to be reasonably matched, the pre-peak model response

is too stiff, and the large compression strains observed just prior to

failure are not predicted. Close inspection of the remainder of the

hollow cylinder predictions compiled in Appendix D uncovers two distinct

trends: i) as the trajectory of the stress path moves away from

compression toward extension, the simulations worsen in that the

calculated shear stress-shear strain and volumetric compressive response

become stiff er than the measured data, and ii) the strength asymptote is

under predicted for the tests where the angle between the vertical

direction and the major principal stress is close to 32°, while it is

overpredicted near 75°. Seereeram et al. (1985) have attempted to

explain the second discrepancy by correlating (anisotropic) strength
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with the angle between the principal fabric axes and those of the slip-

line field. An important point to emphasize is that all the constant

pressure shear paths, including the pure torsion test, trace identical

curves in q -p stress space, and so generate exactly the same predicted

response.

Because of the well-known experimental difficulties associated with

extension tests (Jamal, 1971, and Lade, 1982), it is perhaps premature

to conclude from this single series of tests that the formulation is

unsuitable for loading paths which are far removed from compression

stress space. In fact, axial extension tests and constant pressure

extension tests reported by Tatsuoka and Ishihara (1974a) and Luong

(1980), respectively, contradict Saada's data and seem to be consistent

with what the simple model will give.

As part of this research, an experiment was devised specifically to

investigate the volume change phenomenon during an axial extension test.

A solid cylindrical specimen, of height to diameter ratio of unity as

suggested by Lade (1982), was equipped with LVDTs (Linear Variable

Differential Transducers) at the center third of a water-saturated

sample. During extension shear, volume changes were measured by the

LVDTs and the conventional burette readings, and the results of this

study are pictured in Figure 3.25. Superposed on this plot are a) the

observed volumetric response as recorded by the LVDTs and the burette,

b) Saada's hollow cylinder extension test data, and c) the model

prediction. Based on this graphic evidence, it does indeed seem

premature to criticize the model's performance in simulating extension

volume strains. The reader is therefore urged to withhold judgement on

this aspect until the soil mechanics community can concur on what is
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real behavior for extension tests. This statement is in the spirit of

Professor Scott's epilog in his recent Terzaghi lecture (Scott, 1985)

where he called for the development of an international data bank of

test results on soils.

If we do not withhold judgement and assume that the behavior

recorded by Saada is real and that the material is reasonably isotropic,

then the data suggests that both the shape of the consolidation portion

of the yield surface and the plastic moduli interpolation rule in

extension differ markedly from compression. There is evidence, however,

to indicate that the sand specimens used in Saada' s experiments were

anisotropic. Many researchers have verified that, at least on the

octahedral plane, the strength of nearly isotropic soil approximates a

Mohr-Coulomb type failure criterion. Podgorski (1985) has recently

surveyed these isotropic failure criteria. Therefore, if such a

criterion is taken for granted, and if the soil is indeed isotropic, the

computed strength parameter should be approximately constant and

independent of the path of loading. To test this hypothesis, three

well-known isotropic failure criteria were used to evaluate Saada'

s

data, and the results are presented in Table 3.5. Clearly, looking for

instance only at the "G" tests to rule out the possibility of nonlinear

pressure effects, inherent anisotropy has a significant influence on the

strength and there is no reason not to expect it to also have an effect

on the stress-strain response. Anisotropy could therefore be the cause

of the discrepant axial extension prediction, and if this is true, as

the author believes likely, it renders Saada' s data an unsuitable

proving ground for the proposed theory.
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Table 3.5 Computed Isotropic Strength Constants for Saada's Series
of Hollow Cylinder Tests

[(Ij_) - 27] (l^)'
056

[-( Iil g ) - 9] Friction Angle

I 3 P I3

Reference: (Lade, 1977)
a

(Matsuoka, 1974) (Shield, 1955)

Constant Intermediate Principal Stress Tests

DC (or

CTC of Fig. 2.3) 30.6 4.45 36.71

RTC (of Fig. 2.3) 28.2 4.43 36.67

•DCR 15 34.7 5.00 40.39

DCR 32 45.9 7.74 49.69

DTR 58 26.7 5.81 42.74

DTR 75 23.9 5.34 39.49

DT 90 (or

RTE of Fig. 2.3) 29.6 6.64 42.34

Constant Mean Normal Pressure Tests

4.73

5.83

11.22

8.22

5.15

3.91

5.63 40.00

GC (or TC
of Fig. 2.3) 31.7

GCR 15 40.2

GCR 32 66.1

R 45 (or

pure torsion) 40.4

GTR 58 23.9

GTR 75 17.9

GT 90 (or TE
of Fig. 2.3) 25.6

37,.57

42,.89

55.,02

49..32

41,,00

35.,49
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3.7.2 Simulation of Hettler's Triaxial Tests

The physical characteristics of the two sands used in this

study—one a medium- grained sand from Karlsruhe, Germany, and the other

a fine-grained dune sand from Holland—are described by Goldscheider

(1984) and Hettler et al. (1984).

In the first series of tests, the medium grained Karlsruhe sand was

used to prepare four specimens at a relative density (D ) of 99.0?.

These samples were sheared to failure in axial compression with constant

confining pressures of 50, 80, 2U0, and 300 kN/m 2 respectively, and this

data is given in Figure 3.26. Notice here that the failure envelope is

straight (constant Oi/o 3 ratios) and the stress-strain curves are neatly

normalized.

The second phase of the program consisted of tests in which the

confining pressure was kept constant at 50 kN/m2
, while the relative

density of the prepared specimens was varied. Stress-strain data for

this test sequence was obtained at relative densities of 62.5)6, 92.3$,

99.0$, and 106.6$; see Figure 3.5. Accompanying these data sets on

Karlsruhe sand were the results of a hydrostatic consolidation test (at

99$ relative density) and an axial compression test (at 92.3$ relative

density) with an all-around stress of 400 kN/m 2
. Hettler took care to

point out that the specimens were initially isotropic by noting the

equality of the normal strain components during hydrostatic compression.

The final series of Hettler's experiments were carried out on three

specimens of Dutch dune sand, each prepared at an initial relative

density of 60.9$. These samples were sheared in axial compression under

ambient pressures of 50, 200, and 400 kN/m 2 respectively. Unlike the

medium- grained sand from Karlsruhe, the failure meridian of this
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Figure 3.26
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Results of axial compression tests on Karlsruhe sand
at various confining pressures and at a relative
density of 99% (after Hettler et al

. , 1984)
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fine-grained sand was curved as exhibited in Figure 3.27 by the unequal

Ox/03 ratios at failure.

The model parameters for each sand were initialized and these are

summarized in Table 3.6. Other than the parameters "Q" and "b" (which

control the shape of the yield surface), this list of model constants

reflects the general trends with increasing relative density suggested

in Table 3-3. Since no unloading data was presented by Hettler et al

.

(1984), the elastic shear moduli were reckoned, using an ad-hoc

procedure suggested by Lade and Oner (1984), to be twice that of the

initial slopes of the shear stress vs. shear strain (q vs. e) data. And

except for the Karlsruhe sand at a relative density of 99?, hydrostatic

consolidation tests were also not avaialable, so it was necessary to

estimate the density hardening parameters (A) in all but this one case.

As mentioned previously in section 3.6, the representation gives

the same plastic response for each of a series of parallel stress paths

emanating from the hydrostatic axis if the failure envelope is straight.

However, if the failure envelope is curved, or if the plastic bulk

modulus increases non-linearly with hydrostatic pressure, this statement

would not be true. Hettler' s data indicate that in cases where the

failure envelope is straight, see Figure 3.5 for example, the

stress-strain curves can indeed be normalized. Therefore, in such

cases, all verifications could just as well be placed on one plot.

However, this was not taken advantage of in preparing the figures. But,

for economy of presentation, the predictions given in the body of the

dissertation for Karlsruhe sand (i.e., the sand with the normal izable

data) are only at one level of confining pressure, 50 kN/m2
, while the

remainder have been included for reference in Appendix E.
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figure 3.27 Results of axial compression tests on Dutch dune sand
at various confining pressures and at a relative
density of 60.9% (after Hettler et al

. , 1984)
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Table 3.6 Model Parameters for Karlsruhe Sand and Dutch Dune Sand

PARAMETER

Field of Plastic Moduli Constants

MEDIUM GRAINED KARLSRUHE SAND
Relative Density

62.5? 92.3? 99.0? 106.6?

.2868 3195k

m - -

n 2.2 2.0 2.0

A 300 500 530

Plastic Flow or Yield Surface Parameters

N

Q

b

3390 .3503

1.9

550

.265 .265 .265 .265

1.8 1.4 1.3 1.5

12.9 11.4 11.1 11.6

Elastic Constants

1070

.70

1810

.65

2100

.62

2200

.57

DUTCH DUNE SAND
Relative Density

60.9?

.3400

.0601

2.6

300

.230

1.8

14.8

1332

.668

Note: The slope of the yield surface at the origin of /Ja-Ii stress
space, S, is assumed equal to 1.5 in all cases. Also note that
these parameters were computed from the data of Hettler et al.
(1984).
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Figures 3.28-3.32 are, in sequence, plots of the calculated results

superposed with the experimental data points for the hydrostatic

compression test at 99? relative density, and the axial compression

paths on samples of relative densities 62.5?, 92.3?, 99.0?, and 106.6?.

Correspondence between measured and predicted response is remarkably

accurate in all cases. This is particularly encouraging because the

data are known to be of high quality. The model's intrinsic ability to

simulate this wide cross-section of densities over a range of confining

pressures is testimony to its rationality.

Figures 3- 33~3- 35 are the predictions of the axial compression

tests on the fine-grained dune sand with the curved failure envelope.

These are also impressive considering the " non-normal izable" nature of

the dat a

.

3.7.3 Simulation of Tatsuoka and Ishihara's Stress Paths

Figure 3.36 shows the type "A" and type "B" triaxial stress paths

of Tatsuoka and Ishihara (1974b), and Figures 3-37 and 3.38 are plots of

the corresponding stress-strain curves they recorded for these paths.

The material tested was loose Fuji River sand, the physical

characteristics of which have been described by Tatsuoka and Ishihara

(1974b). Both these loading paths consist of a series of axial

compression paths which are offset at increasing increments of confining

stress for the type "A" case and at decreasing levels for the type "B."

To a fairly close approximation, all of the axial shear paths for

the type "A" loading program appear to produce somewhat parallel

stress-strain curves (Figure 3. 37b). This observation lends credence to

the idea that, at least along these paths and for this type and
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Figure 3.28 Measured and predicted response for hydrostatic
compression test on Karlsruhe sand at $9% relative
density (measured data after Hettler et al

. , 1984)
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Figure 3.31 Measured and predicted response for axial compression
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relative density (measured data after Hettler et al
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1984)
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Figure 3.36 Type "A" (top) and type "B" (bottom) stress paths of
Tatsuoka and Ishihara (1974b)
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density of sand, hardening may be neglected without sacrificing too much

modelling power. Using the data of this plot and the results of a

hydrostatic compression test presented by Tatsuoka (1972), the model

parameters for this loose sand were computed and are listed in Table

3.7.

The predicted curves for the type "A" loading path are shown in

Figure 3.39, and except for the shear strain direction during the

incremental hydrostatic loadings from points 3 to 4, 6 to 7, 9 to 10,

and 12 to 13, this prediction agrees qualitatively with the measured

data. Induced anisotropy is believed to be the cause of the wrong

direction predicted by the isotropic model for the small hydrostatic

segments.

Quantitatively, the model response is about twice as stiff as the

measured data, and this problem stems from the choice of the

interpolation rule that controls the field of plastic moduli. In its

present form, it is not capable of precisely matching stress-strain

curves in which the tangent modulus decreases significantly well below

the zero dilation line. Furthermore, by looking at the shape of the

stress-strain curve in Figure 3-37 (b), it is difficult to imagine that

failure should occur at a q/p ratio of 1.55.

To gain greater control over the rate at which K decreases, the
P

interpolation rule may be improved as follows. The plastic modulus at

each point on the zero dilation line can be taken as some fraction of

its corresponding magnitude on the hydrostatic axis, and its reduction

between these two radial lines may be governed by one exponent, while a

different exponent may be used to control its approach to zero (at the

failure line) beyond the zero dilation line. But before doing all this



Table 3.7 Model Parameters for Loose Fuji River Sand

PARAMETER

Elastic Constants

Modulus number, K
' u

Modulus exponent, r

Yield Surface Parameters

Slope of zero dilation line, N

Shape controlling parameter of consolidation
portion of yield surface, Q

Shape controlling parameter of dilation
portion of yield surface, b

Field of Plastic Moduli Parameters

Plastic compressibility parameter, X

Strength parameter, k

(note: no curvature in failure meridian assumed)

Exponent to model decrease of plastic modulus, n

MAGNITUDE

1816

.513

0.281

2.50

11.0

135

.298

Note: these parameters were computed from data reported by Tatsuoka
(1972) and Tatsuoka and Ishihara (1974b)
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Figure 3.39 Simulation of type "A'* loading path on loose Fuji
River sand using the simple representation
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work, it is important to verify that the observed response is indeed

real because the simple form of the interpolation rule was quite

adequate for matching Hettler's tests on sands of similar relative

density (Hettler et al., 1984); see, for example, Figures 3.29, 3-33,

3.34, and 3.35.

For the type "B" loading path (Figure 3. 36b), hardening appears to

be more pronounced, but as the simulation depicted in Figure 3.40

suggests, the qualitative nature of the simple representation is again

not a poor first approximation.

As shown earlier in Figure 3.7, Tatsuoka and Ishihara (1974a) also

performed medium amplitude axial compression-extension cycles on this

loose Fuji River sand. And as they concluded from their study, ". .

.the memory of previous stress history experienced during the cycle in

extension [compression] does not appear in the subsequent triaxial

compression [extension], and therefore, the sample shows yielding from

the outset as if it were in a virgin state." Figure 3.41 shows a

simulation of this path using the parameters of Table 3.7, and for the

first cycle, the "no-hardening" postulate (Drucker and Seereeram, 1986)

does seem relevant. After many cycles, too much strain will be

predicted if hardening is completely ignored. But, for materials

subject to many cycles of loading, as in highway base courses, the

parameters governing the stiffness of the fixed field of plastic moduli

may be derived from the cyclically stabilized stress-strain curve to

give more realistic predictions of the accumulation of permanent

deformation.
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3. 8 Modifications to the Simple Theory to Include Hardening

Two hardening options are implemented. The first is similar in

many respects to the bounding surface proposal of Dafalias and Herrmann

(1980). The key difference is that the plastic modulus here is given

solely as a function of stress. This bounding surface adaptation is

incorporated in a finite element computer program to predict a series of

cyclic cavity expansion tests.

Although the first option could simulate inelastic reloading

response for reloading paths which more or less retrace their unloading

paths, the shape specified for the hardened region does not resemble the

shapes intimated by the experimental stress probes of Poorooshasb et al

.

(1967) and Tatsuoka and Ishihara (1974b). A second option is then

proposed to take these well-known observations into account. This new

theory is used to predict the influence of isotropic preloading on an

axial compression test and the build-up of permanent strain in a cyclic

triaxial test.

Unfortunately, both hardening options sacrifice the ability to

predict "virgin" response in extension after an excursion in compression

stress space.

3.8.1 Conventional Bounding Surface Adaptation

In the cyclic context, the term hardening could refer to the

increase in the size of the elastic region or to the increase in the

plastic tangent modulus at a given stress or both (Drucker and Palgen,

1982). This first modification, which originates from the bounding

surface concept of Dafalias and Popov (1975), involves only an increase

in the plastic modulus. Given the loading history, the objective is
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therefore first to identify the shape and size of the hardened region in

stress space, or the totality of points where the purely

stress-dependent plastic moduli are higher than the magnitudes they

would assume for virgin loading, and then to specify the plastic moduli

at each of these interior points. In general, the hardening control

surface may not resemble the yield surface; if it does, it is a bounding

surface as defined in the theory of Dafalias and Popov (1975).

For simplicity, the hardened region is assumed to have a shape

similar to the yield surface (Figure 3.15) and a size equal to the

largest yield surface established by the prior loading. Thus, the

hardening control surface is really a conventional bounding surface

(F = 0), within which the yield surface (F = 0) moves. For virgin

loading, the bounding surface and yield surface coincide.

The essence of the bounding surface concept is that for any stress

state a within the boundary surface or hardened domain F = 0. a
P

corresponding image point o on F can be specified using an appropriate

mapping rule. Having established a, the plastic modulus is rendered an

increasing function of i) the Euclidean distance between the actual

stress state (a) and the image stress state (a), and ii) the plastic

modulus K at a. Dafalias and Herrmann (1980) employed the radial

mapping rule illustrated in Figure 3.42 such that

K
p

= K
p

[V 6
' 6o '

(K
p
)o] ' (3.8.1.1)

where (K ) q is the plastic modulus at 6 = 6 . To ensure a smooth

transition from reloading to virgin or prime loading, the function K
P

must guarantee that K = K when 6=0. This mapping rule also requires

that the limit line be straight to avoid mapping to points -outside it.
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Since a radial line connects the current stress state (a) with the

image state (a), we can write

5 = M, 6 5 1, (3.8.1.2)

where B is a positive scalar. The equations for computing the mapping

quantity 6 directly from the current state of stress and the size of the

bounding surface are presented in Appendix F.

The Euclidean distance between the origin and the image point (6 ),

and the distance between the current stress state and the image point

(6) are

S = 6 AojjO^) (3.8.1.3)

and

5 = (8 - D Aa.jO.j), (3.8.1.4)

respectively.

Therefore, once 8 is computed from a knowledge of the size of the

boundary surface (I ) and the current stress point, the stress state o

can be located and used to compute the "virgin" bounding plastic modulus

K p« For this stress-dependent formulation only g is needed to calculate

K .

P

To complete the formulation, a specific form for the function K
P

(equation 3.8.1.1) must now be selected. Zienkiewicz and Mroz (1984)

proposed the form

K
p

= K
p

[6,/(6 - 6)]
Y

= K
p

B
Y

, (3.8.1.5)

which is adopted here because it adds only one more parameter (Y) to the

existing list. If Y is constant, plastic response is cyclically stable,

but in general, it may be considered a function of the number of load

repetitions, etc. to simulate cyclic hardening or softening. Notice

from equation 3-8.1.5 that K + « as 5 5 .
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On the hydrostatic axis, observe that

6 - (I )
p
/Ii,

where (I )- is the size (or intersection with the hydrostatic axis) of

the boundary surface. By using the plastic modulus formula (equation

3.4.7) and the previous equation, the plastic modulus at the bound on

the hydrostatic axis is found to be

K
p

= A (I ) - X 6 I 1# (3.8.1.6)

Substituting this equation into the mapping function (equation 3.8.1.5)

gives

Y+1 Y+1

K
p

= XI, (6) = X I x [(I,) /Ij] , (3.8.1.7)

which in turn yields the following equation for the plastic volumetric

strains generated on spherical reloading:

eL = _L_ (A
x

- B
x
), . A > B (3.8.1.8)'kk

A x

where

A - Cli/(I ) ] at the end of reloading,

B = CI X /(I ) ] at the start of reloading,

e
kk

= Plastic volumetric strain caused by reloading from B to A,

and

x = Y + 1 .

This equation provides a simple method for initializing Y.

Although one might exist, the writer was not able to find a closed-form

solution for "x" (-y+1) in equation 3.8.1.8, so a trial and error

procedure was adopted.
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3.8.2 Prediction of Cavity Expansion Tests

With two additional refinements, the version of the bounding

surface theory described in the previous section has been implemented in

a finite element routine to predict a series of cavity expansion tests

(Seereeram and Davidson, 1986). The first improvement is the freedom

accorded the parameter R (of equation 3*3.1.6) to match the deviatoric

shape of the failure surface. It is no longer forced to coincide with

the Mohr—Coulomb criterion in extension. Instead, R is now a material

constant which is calculated directly from the (generally unequal)

friction angles observed in compression (<)> ) and extension ($ ) tests,

R = [sin <j) /sin <j> ] [(3 - sin )/(3 + sin <j> )]. (3.8.2.1)

A second modification was effected to predict a softer response in

extension tests, as the data of Saada et al. (1983) suggests. To

accomplish this, the exponent "n" of the plastic modulus equation

(equation 3. 4.7) was made a function of Lode's parameter 9,

n = n /g(6), (3.8.2.2)

where n is the exponent applicable to compression tests and g(9) is as

defined in equation 3.3.1.6. This change causes the shape of the

iso-plastic moduli contours on the deviatoric plane to differ from the

trace of the specified failure locus.

In retrospect, the writer must admit that these modifications were

perhaps not necessary; they do not seem to have as much an impact on the

predictions as originally thought. Therefore, in future studies,

consideration should be given to omitting both of them.

A self-boring pressuremeter probe, implanted in a large-scale

triaxial chamber, provided the necessary experimental data for this

study (Davidson, 1983). The soil tested, Reid-Bedford Sand, was the
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same as that investigated by Saada et al. (1983) and Linton (1986),

except that the relative density was about 1% higher.

Table 3.8 summarizes from Davidson (1983) essential information

regarding the five pressuremeter tests analyzed. Included in this table

are the initial vertical and horizontal stresses, and the elastic

stress-strain and strength parameters [derived from the data using the

elastic-perf ectly frictional "plastic" method of interpretation proposed

by Hughes et al. (1977)]. Notice that tests #2 and #3 as well as tests

#4 and #5 were nominally replicate experiments. The reproducibility of

these data (later see Figures 3.45 and 3.46 for example) gave the writer

the needed confidence to proceed with such a rigorous solution.

Selection of the material parameters for the pressuremeter

simulations was not a simple task because the element tests of Saada et

al. (1983) and Linton (1986) may not manifest the real behavior of

Reid-Bedford sand. Table 3.9 lists the model parameters used in the

finite element analysis, and these were selected on the following basis:

1. The strength parameter k used in all simulations was computed

from an average of the friction angles listed in Table 3.8.

2. A unique (constant) elastic shear modulus was input for each

numerical prediction, and these were calculated directly from

the small unload-reload loop common to all pressuremeter tests

(Table 3.8 provides this information).

3. The material constants N, Q, b, and n were assumed to be the

same as that for Reid-Bedford sand at 75? relative density (see

Table 3.4). Judging from Table 3.5, these parameters do not

seem to be affected much by changes in the relative density.



Table 3.8 Summary of Pressuremeter Tests in Dense Reid-Bedford Sand

TEST IDENTIFICATION

#1 #2 #3 #4 #5

Initial relative
density D {%) 83.2 84.8 85.8 83.2 81.1

Initial vertical
stress (kPa) 45.5 155. 157. 265. 265.

Initial horizontal
stress (kPa) 20.7 46.2 51.7 84.8 92.4

Observed lift-off
pressure (kPa) 35.9 46.2 51.7 84.8 92.4

Estimated shear
modulus (MPa) 45.6 55.2 55.2 82.7 82.7

Friction angle, <j> 39.5° 41.7° 41.3° 41 .2° 39.2°

Note: Tests # 2 and #3 as well as #4 and # 5 were intended to be

replicate experiments
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Table 3.9 Model Constants Used to Simulate Pressuremeter Tests

PARAMETER MAGNITUDE

Elastic Constants
Elastic shear modulus, G for test #1 45610 kPa

for tests #2 & #3 55160 kPa
for tests #4 & #5 82 740 kPa

(extracted from Table 3.7)

Poisson's ratio, v 0.2

Flow Parameters

Slope of zero dilation line, N .218

Shape controlling parameter of consolidation
portion of yield surface, Q 2.60

Shape controlling parameter of dilation
portion of yield surface, b 15.0

Plastic Modulus Parameters

Plastic compressibility parameter, A 580

Strength parameter, k .325

Parameter to model curvature of failure meridian, m

Shape hardening controlling exponent n 2

Non-standard Parameters

Ratio of radius of failure surface in
extension to compression, R .7

Bounding surface reload modulus parameter, Y 15

Note: the parameters G and k were calculated from data reported by
Davidson (1983), A and Y from Linton (1986), and the remainder
from Saada et al. (1983).
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Note that in this theory the slope of the zero dilation line,

N, does not vary at all with porosity.

4. The reload modulus parameter Y was reckoned from a series of

unload-reload hydrostatic compression tests reported by Linton

(1986). Also calculated from Linton's experiments was the

plastic bulk modulus parameter A; it was found to be about

twice as large as that computed from a similar test by Saada

(see Table 3.4 and Figure 3.18). However, because Linton

repeated many tests, using different types and combinations of

strain measuring devices, all of which gave consistent results,

his characterization was chosen.

5. Finally, the parameter R was estimated from the constant mean

pressure compression and extension tests (GC and GT 90) of

the series of experiments reported by Saada et al. (1983).

Figure 3.43 gives the nodal point and element information of the

finite element idealization of the expanding cavity problem. Observe

from this figure that the radius of the pressuremeter's cavity is equal

to 40.8 mm, and the distance from the centerline of the cavity to the

lateral boundary of the chamber is equal to 607 mm. Also, note the

assumption of plane strain for the boundary conditions and the fact that

the lateral periphery of the calibration chamber does not move. Studies

by Laier et al. (1975), Hartmann and Schmertmann (1975), and Hughes et

al. (1977) support the hypothesis that the pressuremeter cavity expands

under conditions of axial symmetry and plane strain.

The numerical results of the five tests are superposed with the

experimentally measured data in Figures 3.44 to 3.48. Cavity strain in

these plots is defined as the average radial displacement of three
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Figure 3.44 Measured vs. predicted response for pressuremeter
test #1 (after Seereeram and Davidson, 1986)
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Figure 3.46 Measured vs. predicted response for pressuremeter
test #3 (after Seereeram and Davidson, 1986)
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symmetrically positioned "feeler" arms, divided by the radius of the

undeformed cavity. In each prediction, 200 load steps were used for the

initial loading, 50 steps for the small unloading, and 300 steps for the

final loading.

The remarkably close agreement between the measured and predicted

curves suggests that a) the constitutive idealization is indeed a good

approximation to reality for this test path, b) the assumption of plane

strain is valid, c) the pressure-expansion tests are free of any major

sources of experimental error, and d) the conventional procedure for

computing the friction angle <|) from pressuremeter data, as outlined in

Davidson (1983), is rational.

Detailed results, originating from the finite element output,

permitted an inspection of the typical predicted stress path and the

stress distribution in the zone of influence of the expanding

cylindrical cavity. In the graphs that follow, <j , o , and o Q denote
r z 6

respectively the radial, axial, and circumferential components of the

stress tensor in cylindrical coordinates. Figure 3.49 shows the typical

variation of the principal stresses with monotonically increasing cavity

pressure. The variation of the predicted Lode angle 9, an indicator of

the relative magnitude of the intermediate principal stress, is also

shown on this plot. Its significance becomes apparent when related to

Figure 3.50, which shows the variation of plastic stiffness in selected

elements. Notice that the material response is softest when the Lode

angle is minus 30°, or alternatively, when o = a (oi = o 2 ). This

spectacular drop in stiffness is a direct consequence of the connection

imposed between the exponent "n" and the Lode angle 9 in equation

3.8.2.2. The stiffness increases as the Lode angle increases toward a



208

(S39J69P) e 310NV 3QOT
o
CO

m in

i

o
CO
I

"1 o
-i f

o
CM

o
o

5
O

o
C\J

O
o

aj

M-
DO

CO

CU ^
U vC
C 0C

> c
ce o
O to

CO 4J >
0. •H CO

o 2 3 C

00 '* CD -C

o b£ CO

C

UJ
GC cu m

•C CD

o CO

c aj

CU

CO
CO c c^o LU cc

DC cc ai

Q. CO j_)

CO u_
en co

>- cu v^-

o H u
4-1 (VI

CD =Sfc

cc a:

a cu

•H 4J
cj

C w
•H CU

U U
D. CU

e
CM CU

O M

C CO

O CO

U -c
CO c
> CO

(Bdlfl) 4)^
ZD' J

X) :S3SS3U1S IVdlON IHd

<T



209

CO

LU

5
iii

-i
iu

*r eg ^"

* * %
l- H H
z Z Z
Ui UJ UJ

5 5 2
UJ UJ UJ

_i -i -i

UJ UJ UJ

o
04

o
o

o
00

o

o

©
-I oi

CO

0.

UJ
DC

0)
c/>

UJ
oc
CL

>
<

u
"J

u
Hi

E

3
'S)

X
Z)
'-

a
u
o

>
CO ^
O v£

0C
s: a-

S -
c

en

3 aH t:
D v-i

*C >
O CO

e c

•H C
4-J CO

O
o

CO 0)

•H J-l

(J U-i

CO «
> ^

O
eg

o
to

o o
oo

(BdW) x smnaoi/v ousvnd
a-

=



210

steady magnitude of about +15°, and once there, the plastic modulus

decreases again.

Figure 3.51 gives a different view of the stress path in which its

relative position with respect to the zero dilatancy line and the

failure envelope is emphasized. It appears that, for this particular

boundary condition, the soil element does not undergo plastic dilation,

but compacts as it is being sheared. Also note from this figure that

the reloading path more or less retraces the unloading path, and so the

actual shape of the bounding surface does not really matter—virgin

response reinitiates at the point of unloading.

The importance of minimizing disturbance to the surrounding soil is

emphasized in Figure 3-52, which shows the distribution of principal

stresses with radial distance from the cavity wall. Very high stress

gradients exist in the small annular region of soil within a few

centimeters of the probe. Any significant remoulding in this region due

to the field drilling procedure may result in meaningless pressure-

expansion data.

3.8.3 Proposed Hardening Modification

Recall that a hardening control surface is defined here as a

surface which encloses the totality of points where the purely

stress-dependent plastic moduli are higher than their virgin loading

magnitudes. As pointed out previously, experimental studies indicate

that the shape of the hardening control surface does not resemble the

shape of the yield surface relevant to the simple theory. Poorooshasb

et al. (1967) and Tatsuoka and Ishihara (1974b) have found, using a
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variety of experimental stress probes, that these surfaces have shapes

similar to that of the limit surface.

Using the stress paths drawn in Figure 3.53, together with a

Taylor-Quinney (1931) definition of "yield" (as depicted in Figure 2.8),

Tatsuoka and Ishihara (1974b) have sketched the family of hardening

control surfaces shown in Figure 3.54. For simplicity, it is assumed

that these surfaces are smaller versions of the limit surface. So, for

a straight line failure envelope, a hardening control surface F is
P

defined by the maximum q/p ratio established by the loading history.

For the more general form of the failure surface (equation 3.4.9),

the current mobilized stress ratio k . is
mob

k
mob = (Ii'P.)"^. (3.8.3.1)

Ii

As the stress point approaches the limit envelope, k . •> k. If
mob

unloading takes place (i.e., k decreases), the maximum magnitude of

k
, is recorded and labelled the memorized stress ratio k . Thismob mem

magnitude then specifies the size of the "boundary" or hardening control

surface.

At any instant therefore, three stress ratios are known: i) a fixed

magnitude k (which is the size of the stationary limit surface), ii) the

current mobilized stress ratio k . , and iii) the memorized stress ratiomob

k m (or the historical maximum of k . ). If k . - k , the virginmem mob mob mem &

plastic modulus given by equation 3.4.7 is applicable, but if

k
mob

< k
mem ^ a shear preloading), a stiffer modulus must be stipulated.
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Equation 3.8.1.1 is again used to specify the reload modulus, and

it is specialized here to

Y

K
p

= [(K
p
)o " K

p
] (i )

+ V (3.8.3.2)
So

where Y. is a model constant. Observe that, as required, K = K when
P P

6=0, and K = (K ) when 5 = 5 . In contrast to the previous bounding

surface formulation, the origin of mapping is selected as the

hydrostatic state on the octahedral plane containing the current stress

point (Figure 3.55).

From equation 3.4.7, note that the virgin or prime plastic modulus

-*
K at the conjugate point (I l-I 1 , /J 2 ) is simply

% ' A ^ [1 " (k
mem

/k)]n
' (3.8.3-3)

Also, recollect from equation 2.7.2.1 that the radius on the deviatoric

plane is equal to /(2J 2 ) so

6 = (/J 2 - /J 2 )//J 2 = [(k - k J/k ]. (3.8.3.4)t— 2 * 2 mem mob merrr
v;i ° '

^0

As in the first hardening option, the magnitude of the reload

plastic modulus on the hydrostatic axis , (K ) , is given by (cf.

equation 3.8. 1 .7)

Y+1 Y+1
(K

p
)o = A I C(I )

p
/I ] = X I, [(I ) /IJ , (3.8.3.5)

where (Io)_ is the point at which the largest yield surface intersects

the hydrostatic axis (Figure 3-56). With K , 6/5 ,
and (K ) detailed

in equations 3.8.3-3, 3.8.3.4, and 3.8.3.5 respectively, only the

parameter l^ is needed to completely specify the reload modulus

interpolation rule (equation 3.8.3.2).

But before completing the formulation, a shortcoming of equation

3.8.3.2 must be alluded to and amended. It occurs for shear paths
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following pure hydrostatic preconsolidation. Since in such a case k
mem

is zero, no hardening is predicted for any subsequent shear path. The

data of Hettler et al. (1984) in Figure 3.57 for a subsequent axial

compression path contradicts this statement. Although any differences

in the shear stress vs. axial strain and the dilative behavior are

imperceptible, a conspicuous hardening effect shows up in the compaction

volumetric strain. Consequently, a modification is sought to recognize

isotropic or nearly isotropic preloading and to recover equation 3.8.3.5

as a special case for cyclic hydrostatic compression tests.

Since the preconsolidation process does not seem to have any effect

on response in the dilation domain, it is not unreasonable to postulate

that the effects of isotropic preloading should be ignored at some

radial line at or below the zero dilation line. Such a modification can

be effected by rewriting the plastic modulus formula (equation 3.4.7) as

Y+1

K
p

= A I, U') {1 - [f(o)/k]}
n

, (3.8.3.6)

where

B' = 6 C1 - /J* ] + /J* ,

X I x N XIi N

X N = slope of the radial line beyond which "isotropic" preloading

effects are ignored (0 < X £ 1) ,

and is the scalar radial mapping factor defined in equation 3.8.1.2.

In other words, the largest yield surface established by the prior

loading acts somewhat like a cap to the "q/p" hardening control surface.

To test this hypothesis, the isotropically preloaded data of Figure

3.57 for Karlsruhe sand at 99$ relative density was predicted using the

relevant simple model parameters of Table 3.6 and the assumptions that

a) the entire elliptical portion of the yield surface acts as a cap to
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at 99% relative density (after Hettler et al

. , 1984)
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the hardening control surface (i.e., X = 1), and b) Y = 15 (as for Reid-

Bedford sand in Table 3.9). Since there was no shear preloading, the

parameter Yj was not needed. Figure 3.58 shows the calculated and

experimental results; the correspondence is excellent.

Figure 3.59 shows the axial strain accumulation in a constant

amplitude stress-controlled cyclic axial compression test (Linton,

1986). The material tested was Reid-Bedford sand prepared at an initial

relative density of 75%, and the external axial load was cycled between

nominally fixed stress limits of and 100 psi with an ambient pressure

of 30 psi.

Granular base course and subbase course materials undergo this type

of continued (or cyclic) hardening under repeated loads for as many as

10" cycles (Brown, 1974), beyond which point there is cyclic stability,

or plastic shakedown, or sometimes a sudden degradation. Only a crude

formulation for cyclic hardening is implemented here to demonstrate the

versatility of the model to predict this ratchetting. The interested

reader is referred to Eisenberg (1976) and Drucker and Palgen (1982) for

examples of more general descriptions of cyclic hardening and cyclic

softening, and to Mroz and Norris (1982) for an example of a cyclic

degradation option for sand.

To simplify the theory, the response in cyclic hydrostatic

compression is assumed to be immediately stable. That is, the parameter

Y is assumed to be constant and the reload modulus on the hydrostatic

axis, (K ) , is unaffected by the number of load repetitions. This is

not a bad assumption when one considers the relatively small plastic

strains occuring in this non-critical region of stress space. With this

assumption, cyclic hardening (or softening) effects are controlled
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Figure 3.59 Shear stress vs. axial strain data for a cyclic axial
compression test on Reid-Bedford sand at 75% relative
density. Nominal stress amplitude q = 70 psi, and
confining pressure o 3 = 30 psi (after Linton, 1986)
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solely by the exponent Yi of the reload modulus equation (eq. 3.8.3.2).

Note that higher magnitudes of Yj produce a softer response.

Factors which affect the accumulation of permanent strain in

cohesionless material have been reported to be the number of load

repetitions, stress history, confining pressure, stress level, and

density (Lentz and Baladi, 1980). All but the number of load

repetitions and the stress history are implicit in the simple theory.

Stress history effects have been included by the introduction of the

hardening control surface, and now cyclic hardening is incorporated by

replacing the parameter y x with the empirical equation

Y x = Y 2 (N
REp ) , (3-8.3.7)

where N
R

is the number of load repetitions, Y 2 is the magnitude of Y x

for the first reloading (N =1), and Y 3 (a negative quantity) models

the decrease in Y 2 , or the stiffening of the response with increasing

numbers of load cycles. By assigning an approriate magnitude of Y x for

each cycle, log (Y 2 ) and Y 3 can be determined as the intercept and slope

respectively of a straight line fit to a plot of log (Yj vs. log

(N
REP>-

The permanent strain accumulation of Figure 3.59 was predicted

using as approriate a) the simple model plastic parameters and the

reload modulus parameter Y of Table 3.9, b) the elastic constants of

Table 3.4, and c) back-computed magnitudes for the cyclic hardening

parameters Y 2 and Y 3 . To get a more precise prediction of the axial

strain for the first (or virgin) loading, the strength parameter k was

reduced slightly from .300 to .295. The parameters Y 2 and Y 3 were

computed to be 5.23 and -0.11 respectively, and cyclic stability was
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assumed after 25 cycles. Figure 3.60 shows how precisely the

representation predicts this buildup of axial strain.

3. 9 Limitations and Advantages

In conclusion, a number of limitations and advantages of the

proposed theory are summarized.

At this early stage in the development of the model, its main

limitations appear to be the following:

1. As shown in Figure 3.61, an unusual range of stress paths,

moving from region A into region B, can penetrate the limit

surface as elastic unloading or neutral loading paths.

2. The interpolation rule used to model the decrease in K as the
P

stress point moves from the hydrostatic axis to the limit

surface needs refinement. It is not capable of matching

stress-strain curves which become soft at the lower stress

ratios.

3. The proposed hardening options give up the ability to predict

virgin response in extension following a prior loading in

compression. This may be corrected by adding a degree of

stress reversal variable similar to the ones used by Eisenberg

(1976) and Ghaboussi and Momen (1982).

The model proposed here appears to be significantly more rational,

more attractive, and more manageable than many of the present theories

because

1. of the separate and independent status accorded the yield

surface, the limit surface, and the hardening control surface;
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Figure 3.60 Prediction of the buildup of the axial strain data
of Figure 3.59 using proposed cyclic hardening
representation



227

b
CM

+ CO

II

a

CO

I

n

a;

=
4J

—
c
c
>
Oi£
c
M
c
«
CJ

cc

c
c
•rJ

M
D
s-

U

be
c JC
tH 4J
> «
c C^
E
M

^3 c
C •r-

a -c
Rj< C
rt

c
r-l

•H 03

u Ih

ai 4J
s- 3

U
0) C
*
4J ee

c s-

«H c

bC w
C c
•r- M
4J a
S- a)

M c
4J -j

00 c
3

be
c
•H H
T3 ^J

« ED

C re

H —
c

>,
c d< re

_
X

•

m
a>
>-

fl

M



228

2. of the simplifications resulting from the automatic

satisfaction of the consistency condition which therefore does

not enter into the determination of the plastic modulus;

3. each parameter has a physical signifance and each can be

correlated to a stress-strain-strength concept in routine use

by geotechnical engineers;

4. the experiments used for model calibration are the standard

triaxial test and a hydrostatic compression test;

5. the initialization procedure is straightforward and can be

carried out expeditiously;

6. varying degrees of sophistication can be achieved by adding

model constants and by assuming numbers for, instead of

rigorously calibrating, certain less-critical material

parameters;

7. the model could predict reasonably accurately a wide variety of

monotonic stress paths over a range of densities and sands of

different genesis, and in its crudest form, it could also

qualitatively simulate the more complicated type "A", type "B"

,

and compression-extension stress paths of Tatsuoka & Ishihara

(1974a, 1974b);

8. the model very precisely predicts the expansion of a

cylindrical cavity, which, although not particularly

complicated, is a boundary value problem of growing importance

in soil mechanics;

9. satisfies the requirements of Drucker's postulate of stability

in the small in the forward (or monotonic) sense, which

contributes to computational stability;
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10. an associative flow rule results in symmetric stiffness

matrices in finite element calculations which are much more

economical than the non-symmetric ones that emanate from

non-assocative flow rules;

11. it is computationally economical and easy to implement since

there is no need to keep track of the evolution of any

so-called plastic internal variables (such as plastic

volumetric strain, plastic work, etc.) during the deformation;

12. by using some straightforward modifications (which are familiar

to those acquainted with the bounding surface concept) , the

theory can be set up to model (cyclic) hardening aspects of

sand behavior; and

13. the consolidation yield surface can be easily modified to model

anisotropic plastic flow as a deviation from normality to the

"isotropic" yield surface using the method suggested by

Dafalias (1981).



CHAPTER 4

A STUDY OF THE PREVOST EFFECTIVE STRESS MDDEL

4. 1 Introduction

The stress-strain behavior of soil is strongly nonlinear,

anisotropic, elastoplastic, hysteretic, and path dependent. Although

inherently anisotropic materials can be modeled to a certain extent by

nonlinear elastic and isotropically hardening elastic-plastic

constitutive models, stress-induced anisotropy cannot be realistically

accounted for in the framework of the simpler theories. Alternatively,

more general models, which merge concepts from isotropic and kinematic

plasticity, have evolved to simulate the response of soil for

complicated three dimensional, and in particular, cyclic loading paths.

Prevost (1978) has utilized the field of work hardening moduli

concept forwarded by Mroz (1967) to develop a series of elastic-plastic,

anisotropic hardening models. Each of these was formulated to model a

specific mode of soil response, ranging from the undrained behavior of

saturated clays to the drained behavior of sands. In this study, only

the drained behavior of cohesionless soils is considered so the pressure

sensitive version (Prevost, 1978, 1980) is of primary interest.

230
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4.2 Field of Work Hardening Moduli Concept

An understanding of the field of work hardening moduli concept is a

fundamental prerequisite to this presentation. This concept is perhaps

most simply illustrated by considering "rapid" (or undrained) tests on a

saturated clay. The behavior of clay under these conditions resembles

metal behavior in that the plastic volume change is negligible. As a

consequence, the yield surface's projection on the octahedral plane is

all that need concern us. Suppose a series of mean normal pressure

tests, such as stress paths TC or TE of Figure 2.3, were carried out,

each starting at the same hydrostatic stress state and moving radially

outward in principal stress space (at varying Lode angles e). For each

test, the shear stress invariant q [= /(3 J 2 )] versus the shear strain

invariant e [= /(3 e:e)] is recorded and plotted. Taking the steepest
2

initial slope of all the q vs. e plots as twice the linear elastic shear

modulus G (= dq/2 de), separate the elastic (e
e

) from the total (e) to

obtain the plastic strains (e
p
). Replot all stress-strain data as q vs

.

P.

Along each of these linear shear paths, it is logical to expect

that the plastic shear modulus K (= dq/de P
) will decrease with

increasing distance from the starting point. Compute the slopes dq/de P

at representative levels of stress (q) , and connect the stress points of

equal slopes (or plastic shear moduli) on all radial paths. This

procedure results in a non-intersecting set of yield surfaces or iso-

plastic modulus contours in stress space, each of which circumscribes

the hydrostatic axis.
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For simplicity, assume that these loci consist of a set of

concentric circles or Mises yield surfaces [Fig. 4.1 (a)], the largest

of which is a failure surface (with a plastic modulus of zero).

Furthermore, assume that each yield surface undergoes pure kinematic

hardening and remains unaltered until the stress point meets it. These

a priori assumptions imply that the field of yield surfaces sketched

from the aforementioned test data is also the initial field of yield

surfaces that characterizes the material. If these yield surfaces were

allowed to translate or change their size prior to contact by the stress

point, the initialization procedure would not have been so

straightforward.

With the location, size, and associated plastic modulus of each

yield circle known, the working principles of such a representation can

now be demonstrated. Say the stress point leaves the hydrostatic state

and moves out on the deviatoric plane and engages the first yield

surface (which encloses the purely elastic domain). The resident

plastic modulus on this surface is employed in the flow rule (equation

2.7.3.12) to predict plastic strain increments. The normal vector at

this point on the yield surface is also assumed to give the direction of

plastic flow (i.e., an associative flow rule). As outward shearing

continues, the active yield surface, with the stress point "pulling" it

along, must translate towards its outer neighbor in such a manner that

when both surfaces come into contact, they do not intersect. If they do

happen to cross each other, a problem arises because the plastic modulus

at the intersection points is not unique. The special translation rule
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which prevents such an abnormality is known as the Mroz' s hardening rule

(Mroz, 1967), and it is stated in mathematical terms later in this

chapter.

When the second surface is engaged by the stress point, its plastic

modulus supplants that of surface #1 in the constitutive equation. This

surface, which was stationary until contacted, now moves according to

Mroz's hardening rule to the third surface in the field. The

deactivated inner surface (//1 ) remains tangentially attached to the

newly activated surface (#2) at the current stress point. This contact

point is called a conjugate point . Since the rigid inner surface must

satisfy the "nesting" or non-intersecting requirement, it is apparent

that its translation is dictated solely by the movement of the active

surface.

If shear loading continues and the second surface moves out to

engage the third member of the family, the same transition process

occurs, and surface #3, with surfaces #1 and #2 nested within it, now

moves inside of surface #4.

If while on surface #3 (or any other surface for that matter), the

stress path turns inward to the hydrostatic axis, the stress point

disengages surface #3 and re-enters the region bounded by surface #1 or

the elastic domain (Figure 4.1b). Accordingly, the plastic modulus is

set to infinity. If unloading continues and the stress point moves

toward the opposite end of circle #1 , it reactivates this surface and

its associated modulus on the way back, and reverse plastic strains are

generated. Depending upon the arrangement of these surfaces prior to

the unload, the stress point may encounter several other surfaces on an
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unload or a redirected path. Memory of the loading, including induced

anisotropy, is therefore reflected by the current configuration of the

nest of yield surfaces.

In sketching the field of yield surfaces or plastic modulus

contours, it may turn out that they are all not symmetrically placed

with respect to the hydrostatic axis. Inherent anisotropy is manifest

in such an initial off-centered arrangement.

Two simplifications of this multi-level memory structure have been

introduced in soil mechanics. The first considers the existence of only

yield surface #1 and an outermost or bounding surface, which may or may

not be the limit surface. Mroz's translation rule still applies for

this two surface configuration. Instead of the field of discrete

hardening moduli, an interpolation rule prescribes the link between the

plastic modulus (at the current state) and the distance from and the

magnitude of K at the conjugate point on the boundary surface. Krieg

(1975) and Daf alias and Popov (1975) independently elaborated this

modified description of the field of work hardening moduli. Variations

of this concept, with a vanishing elastic region, have led to yet

another group of so-called bounding surface models in soil plasticity

(Dafalias and Popov, 1977; Dafalias and Hermann, 1980; and Aboim and

Wroth, 1982). In these later models, the degenerate nature of yield

surface #1 "frees" the theoretician from the analytical rigor of Mroz's

hardening rule, and allows the use of an experimentally verifiable

mapping rule to locate a conjugate point on the boundary yield surface.

The second major modification to the discrete nesting surface idea

is that the field of hardening moduli inside the bounding surface are

given by an infinite number of nesting surfaces. In this
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representation, the active plastic modulus is a function of the ratio of

the radius of the instantaneous loading circle to the radius of the

bounding surface. A loading surface is defined here as a subsequent

surface into which an initial yield surface deforms and/or translates.

If the radius of the loading surface continues to increase, then the

plastic modulus is governed by the ratio of the radius of the loading

surface to that of the bounding surface. If, on the other hand, the

stress path reverses and is directed to the interior of the loading

surface, the instantaneous location of the just disengaged loading

surface is recorded and it is labelleG a stress reversal surface . Prior

to penetration of the stress reversal surface on an unloading or

reloading path, the plastic modulus is controlled by the ratio of the

size of the active loading surface to that of the stress reversal

surface. Once the stress state exits the domain enclosed by the stress

reversal surface, the interpolation rule reverts to its original form.

Therefore, in essence, the memory of a loading event is only erased by

another event of greater intensity. Pietrusczak and Mroz (1983) were

the progenitors of this concept and they have applied it to model the

behavior of clay and sand.

From these simple and rather appealing concepts has evolved a

purportedly complete statement on elasto-plastic anisotropic hardening

theory for soil: the Prevost Pressure Sensitive Isotropic/ Kinematic

Hardening Model (Prevost, 1978, 1980). The remainder of this chapter

describes its essential features and looks at its performance in

predicting a series of hollow cylinder tests on medium dense sand.
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4. 3 Model Characteristics

The pressure- sensitive version of the Prevost model is formulated

in terms of directional stress components (i.e., the stress invariants

are not used), and associative flow is assumed in the deviatoric

subspace. The model does not explicitly involve plastic potentials,

although their existence is implied because the computation of the

volumetric component of the plastic strain relies on a special form of

the modified flow rule (equation 2.7.7.3). Material frame indifference

is satisfied in the formulation, but it is not certain whether energy is

conserved under all conditions of loading and unloading (Sture et al.,

1984). The development of the model is based on conventional flow or

incremental plasticity theory, and hence most of the fundamental

principles of Chapter 2 are but specialized here.

4.4 Yield Function

The model employs a yield function of the form

F
(m)

= 3 [3 - a
(m)

]:[s - a
(m)

] C* [p - 6
(m)

]
2 - [k

(m)
]*= 0,

2

(4.4.1)

where s and p denote the deviatoric stress tensor and the mean stress

( m ^

respectively; a represent the deviatoric components of the center of

the yield surface "m", while 6 is its center coordinate along the p

axis; k is its radius; and C is the axis ratio of the meridional

section of the yield ellipse in q-p subspace. Deviatoric sections plot

as translated circles. Prevost (1978, 1980) usually set the factor C 2

equal to 9/2 so equation 4.4.1 frequently appears in the literature as

F
(m)

= 3 [a -
|
(m)

]:[o - £
(m)

] - [k
(m)

]* = 0,
2
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where § are the components of the center coordinate of the yield

surface m,

On)
_ o

(m)
+ B

(m) ^

With this particular axis ratio, the yield surfaces plot as spheres

2

3

of radius /2 k in stress space.

4.5 Flow Rule

The incremental plastic stress-strain relation is of the modified

form stated in equations 2.7.7.3 and 2.7.7.4 of Chapter 2,

de
kk

= A Al ^— (4.5.1)
9o

kk

and

de? = A A 2 _3F . (4.5.2)
J

3s. .

1J

Prevost (1978) assumes normality in the deviatoric subspace, which means

that the factor A 2 is unity, but he used the function A
l

to modify VF to

bring it into agreement with the observed plastic volumetric strain.

To facilitate an easy comparison of the formulation reported here

with Prevost's work, most of his nomenclature is retained: the tensors Q

and P are the gradient tensors to the yield and plastic potential

functions, replacing VF and VG respectively; and Q' and P' are the

deviatoric components of Q and P respectively. If this alternate

nomenclature is substituted into the general flow rule of Chapter 2

(equation 2.7.3.13), we find that

*£
P

= J_JL UL « da},

K
p

lEl |Q|
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which differs from the form

de
P

= J_ {Q:da} J_ P (4.5.3)

K
P Isl

2

used by Prevost (1978). All this means is that the magnitude of K in
P

equation 4.5.3 differs from that in Chapters 2 and 3 by the factor

|E|/|Qh it is a trifling divergence from the general form of the flow

rule. Observe, however, that the incremental stress-strain relationship

(equation 2.7.8.8) must be altered to

da - [ C
e ( g

e;
g } ( g :C-

6)
] de

K
p

{Q:Q} + (Q:C
S
:P)

to accomodate this alternative statement of the flow rule.

The non-associativity function A! of equation 4.5.1 is assumed to

be

/(Q* :Q'

)

Aj = 1 + A 3
- 2j

'

, or

|tr Q|

tr P - sign (tr Q) A 3
/(Q':Q*) + tr Q, (4.5.4)

where A 3 is a constant affiliated with each surface. This choice models

an increasing departure from associativity with increasing Q' , and when

Q' is zero, the flow rule is associated, which ensures that pure plastic

volumetric strains are predicted for an isotropic compression path if

the center of the yield surface lies on the hydrostatic axis. Since the

non-associativity of plastic flow is controlled by a single parameter,

A 3 , the subscript on it is dropped in the sequel and it is referred to

as simply the "A" parameter.

A pair of plastic modulus parameters h and B characterizes

each surface. These parameters are used to calculate the generalized

plastic modulus K for use in the incremental stress-strain relation.
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As in the non-associativity function "A", the plastic modulus is assumed

to vary only along the meridional section of a yield surface,

Kp=h (m)
+

trjg
B
(m)

> (4>5>5)

/(3Q:Q)

where h is the plastic shear modulus and [h + B ] and

[h - B ] are the plastic bulk moduli associated with F during

loading and unloading in consolidation tests. The projections of the

yield surfaces onto the deviatoric subspace thus define regions of

constant plastic shear moduli.

4.6 Hardening Rule

The yield surfaces are assumed to follow an isotropic/ kinematic

hardening rule, the direction of translation being determined by Mroz's

(1967) non-intersection requirement. There are three distinct

computational steps to consider in this evolutionary rule: 1) isotropic

and kinematic hardening of the outer (not yet reached) group of

surfaces, 2) updating the location and size of the active surface, and

3) computation of the location of the inactive interior surfaces based

on the status of the active surface (determined from step 2). The last

step, which is also perhaps the easiest of the three, is described

first.

First generalize the yield function to the form

F
(m)

- F
(m)

[a -
§
(m)

] - [k
(m) f = 0, n > (4.6.1)

where n is the degree of F in [o - £ ]. Further assume that all

the yield surfaces are similar so F = F for all m. The function F is

usually a homogenous function of order n of its arguments. What does
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this mean? The yield function F is said to be homogenous of order n if

the following is satisfied:

FL A (o - | )] = A FlO-£ J,

where A is a positive scalar.

When a surface m is moving toward surface m+1 in the field [Figure

4.2 (top)] the stress point on surface m, at M, moves to the

corresponding conjugate point on surface m+1, at R, to avoid

overlapping. Geometrically, it can be shown that the tensor linking the

center coordinates of surface m, g ,
to the stress point o, at M, is

directed in the same sense as the tensor connecting the center of

surface m+1, g , to the conjugate stress state at R, a D .

Mathematically, this statement means that

2-5 (m) "AC 2R -S
(m+1)

], (4.6.2)

where A is again a positive constant.

When surface m comes into contact with surface m+1 , a n coincides

with a and equation 4.6.2 becomes

o -£ (m+1)
= A [ a-g (m)

]. (4.6.3)

Combining this equation with equation 4.6.1 gives

F [o - §
(m+1)

] - A" F [q - 5
(m)

] = A" [k
(m)f = [k

(m+1)
]

n
, (4.6.4)

and therefore by merging equations 4.6.3 and 4.6.4, we see that

2 5 = 2
j . (4.6.5)

k
(m+1) (m)

This geometrical constraint goes into effect when surface m+1 is

engaged and surface m becomes one of the interior inactive surfaces.

Consequently, whenever the location and the size of the active surface



242

(cry
— crx )

"XjME/3

P=(a; +2<

E \
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and the sizes of the interior surfaces are known, the location of all

interior surfaces can be calculated forthwith; i.e.,

„ _ r
(m) ,(m-1) fm-2)

2 5 - 2
jj - 2 ' 5 = . . . etc. (4.6.6)

k
(ra)

k
(m_1)

k
(m_2)

By combining equations 4.6.2 and 4.6.4, the expression for the

translation direction jj, which joins the current stress state a on

surface F to its conjugate point a
R

on the next larger surface

F , can be derived:

IS
= 2 R

- 2 =^ [2 " §
(m)

] " Ca - g
(m+1)

]. (4.6.7)

k
(m)

All yield surfaces in the field are assumed to isotropically harden

or soften with the total volumetric strain rate,

dk
(m )

= A de
v

, (4.6.8)

k
(m)

where A is a density hardening constant. Direct integration of this

equation gives the instantaneous sizes of the yield surfaces,

k
(m)

= k
(m)

exp(A e
y
), (4.6.9)

where ko are the intial values of k (at e =0). Center

coordinates of the yield surfaces exterior to the active surface F

are assumed to move radially with changes in the volume strain,

_(m+1) _(m+1)
,, ,

§ = g exp(A e
v
),

c (m+2) (m+2) ,, ,
§ = £ exp(A e

v
), . . .,

g
ip)

= |
{p) exp(A e

v ), (4.6.10)

where £ ,. . ., ^
P are the initial center location of the surfaces

m+1 to the consolidation (or outermost) surface p. As the material

starts to dilate, the isotropic and kinematic rules compel the yield

surfaces to shrink in size and move back toward the origin of stress
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space. This, in effect, simulates a weakening or softening of the

soil's structure with increasing porosity.

All but one aspect of the hardening rule has been stipulated: the

computation of the magnitude of the incremental translation tensor dy (=

dy y) for the active yield surface m. Numerically, this is accomplished

by first defining the translation direction y (using equation 4.6.7)

from the updated center location ^
m+1

' and the sizes k and k

(equations 4.6.9 and 4.6.10 respectively). The consistency condition is

now invoked to solve for the scalar dy.

If an arbitrary stress increment, da = ds + dp 6, is applied, the

active yield surface will translate and change its size such that

F(o do, k
(m)

dk
(m)

, £
(m)

+ dg
(m)

) = (4.6.11)

is satisfied at the end of the incremental loading. To make for a

neater presentation, the implied superscript m, in reference to the

active surface, is omitted hereafter. The attention to detail in this

derivation may seem overzealous, but it is justified in that (to the

writer's knowledge) it is presented here for the first time in published

work.

For the yield ellipsoids used in Prevost's theory, equation 4.6.11

specializes to

F = 3 C(a + ds) - (a + da)]:[(s + ds ) - (a + da)] +

2

C 2
[(p + dp) - (6 + dB)] 2 = [k + dk] 2

. (4.6.12)

A reorganization of this equation gives

F = 3 [(s - a) + (ds - da)]:[(s - a) + (ds - da)] +

2

C 2
[(p - 8) + (dp - dB)] 2 - [k + dk] 2 = k 2 + 2 k dk + dk 2

,

which may then be expanded to
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3 C(s - a):(s - a)] + 3 [(da - da) : (ds - da)] +

2 2

3 C(s - a):(ds - dg) ] +C 2
(p - B)

2
+ C

2
.(dp - d8)

2 +

2 C 2
(p - 6)(dp - dB) = k

2 + 2 k dk + dk 2
. (4.6.13)

Recall from equation 4.4.1 that

3 (s - a):(s - a) + C
2

(p - S)
2 = k

2
,

2

and this knowledge allows us to delete terms in equation 4.6.13 to

obtain

3 C(ds - da):(ds - da) ] + 3 [ (s - a) : (ds - da)] +

2

C 2 (dp - dB)
2

+ 2 C 2
(p - B)(dp - dB) = 2 k dk + dk 2

. (4.6.14)

The parenthetical terms of this equation are now expanded out to

give

3 ds:ds + 3 da: da - 3 ds:da + 3 (s - a) : ds - 3 (s - a) : da +

2 2

C 2 (dp) 2
+ C 2

(dB) 2 - 2 C 2 dp dB + 2 C 2
(p - B) dp -

2 C 2
(p - B) dB - 2 k dk - dk 2 = 0. (4.6.15)

With the translation rate tensor written as

d£ = dg + dB 6 = dp y = dp (dev y +
tr p

5)

(where dev y are the deviatoric components of the tensor y) , da and dB

tr
is replaced by du dev y and du jj

respectively in equation 4.6.15 to
3

get

3 ds:ds + 3 (dp dev y):(dp dev y) - 3 ds: (dp dev y) +

2 2

3 (s - g):ds - 3 (s - g):(dy dev y) + C
2 dp 2 +

C 2 dp 2l_^ dp ^J - 2 C 2 dp dp
tr

« + 2 C 2
(p - B) dp -

3 3 3

2 C 2
(p - B) dp tr p - 2 k dk - dk 2 = 0.

3

(4.6.16)



246

Since the translation direction jj is already specified (in equation

4.6.7), the objective is to solve for the (only) unknown dp in equation

4.6.16. This equation is quadratic in dp, and must be treated

accordingly. First collect the coefficients of dp 2
, dy, and the

constant terms and store them in descriptive variables A, B, and C

respectively,

A = 3 (dev y : dev y) + C 2

^_J_
tr K

f (4.6.17)
2 3 3

B = - 3 ds: (dev y) - 3 (s - a) : (dev y) - 2 C 2 dp
tr

g -

2 C 2
(p - 8)

tr U
, (4.6.18)

and

C = 3 ds:ds + 3 (s - a):ds + C 2 dp 2 + 2 C 2
(p - 6) dp -

2

2 k dk - dk 2
. (4.6.19)

With these collective variables, equation 4.6.16 is now rewritten

more compactly as

A dy 2 + B dp + C* = 0,

from which the solution for the roots are

dy = - B ± /{B 2 - 4 A C

}

. • (4.6.20)
2 A

In numerical applications, such as the finite element computer code

of Hughes and Prevost (1979), the coefficient B is usually replaced by

an alternate variable B' = -B/2 such that

dy = 2B' ± /|4B' 2 - 4 A C

}

,

2 A

= B' ± /{B' 2 - A C'K (4.6.21)
A
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where A and C are defined in equations 4.6.17 and 4.6.19, and

B i = -b = 3 ds: (dev y) + 3 (s - a) : (dev y) + C 2 dp

2 2 2 ~T~

C* (p - 6)
tr

j.

3

Finally, the (plus or minus) root of equation 4.6.21 is selected on

the basis that the scalar product dy:[_3 ds + dp 5] be greater than zero.
2

4.7 Initialization of Model Parameters

The last and perhaps most singular feature of the Prevost model is

its calibration procedure. As the author can attest to, this task can

sometimes prove to be more challenging than any other aspect in the

implementation of the model.

Quantification of material response is completely specified by the

1) initial positions and sizes of the yield surfaces [a ,

(m) . . (m)
n

g , and k J;

2) plastic moduli parameters associated with each surface [h

and B
(m)

];

3) non-associative flow parameter for each surface [A ];

4) density hardening parameter (A); and

5) elastic bulk (K) and shear (G) moduli.

All parameters, except maybe for the elastic constants, are very

important, and the model is not forgiving if accurate characterization

is not initially achieved, as may be caused by non-smooth input data.
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Three standard laboratory tests provide the input data for the

initialization:

1) an axial compression stress path (CTC of Figure 2.3);

2) an axial extension path (RTE of Figure 2.3) which must start

at the same hydrostatic stress state as the CTC; and

3) a one-dimensional (or K ) consolidation test.

These paths are all restricted to the triaxial (or Rendulic) plane and

the test specimen is assumed to be cross-anisotropic. The vertical (or

y) axis is the axis of rotational symmetry (or the stiffer direction)

and the horizontal (x-z) plane is isotropic. Many useful

simplifications result from these stress path and anisotropy

restrictions. Equation 4.4.1, the equation of the yield surface,

simplifies to

F
(m)

= [q-a (m) P <? [p- 6
(m)

]
2 - [k

(m)
]* =0, (4.7.1)

where

Q = a - a , p =
j_ (a + 2 a ) , and a = 3 a/2 = -3 a = -3 a .

j a nj-x- y xz
From both a mathematical and an intuitive standpoint, it is

interesting to note that equation 4.7.1 represents a translated circle

of radius k in Cp versus q stress space, with the center location at

[CB, a]. These circular plots are illustrated in Figure 4.2 (bottom),

where the polar angle 6 is also defined—this angle is not the same as

the Lode angle e. Observe from the lower picture in figure 4.2 that by

geometry

q = a + k sine, (4. 7. 2)

and

p = 6 + k cose. (4.7.3)
C
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Substituting these transformed coordinates into the following

"triaxial" elasto-plastic constitutive equations:

de
v

= dp + _1_ tr(P) J_ {Q:do},

K K
p

|q|>

and

de
yy = J_ dS

yy
+ J_ Q'J_ tQ'.do},

2G K
P

leads to

de
y
/dp - !_ + 1_ {2C cose + /6 A cose |tane|} { sine C: Y cose },

K K 3 Y
P

(4.7.4)

and

de = 1_ + 1 sine {sine + C Y cose}, (4.7.5)
dq

2G K
P

where Y = dp/dq, de = de - de , de - 2 de + de , and

K = h + B cose. (4.7.6)

Model parameters are separated into two categories: group X

parameters are the elastic and plastic moduli K, G, h and B , and group
' m m' v

Y consists of the size/location parameters of the yield surface a ,

8 , and k . Group X parameters (or moduli) assume the pressure

dependence,

X - X x (£ )

n
, (4.7.7)

Pi

while the group Y parameters are hypothesized to vary with the volume

strain as

3f - Y, exp(A e
y
), (4.7.8)
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where the subscript 1 refers to initial values, and X and n are model

constants. The dependency of the group Y parameters was alluded to

previously in equations 4.6.9 and 4.6.10.

For most cohesionless soils, n is usually assumed equal to 0.5

(Lambe and Whitman, 1969), and the isotropic hardening parameter, X, is

determined from the slope of a log mean stress vs. volume strain plot

using data obtained from a one- dimensional (or K ) consolidation test,

X = I dp de
v

. (4.7.9)
P

If we let 9
C

and e_ denote the magnitudes 6 when the stress point

reaches the yield surface F in a CTC (or compression loading) and an

RTE (or extension unloading) test respectively, equations 4.7.2 through

4.7.8 can then be combined to show that

1 ± 3 = JL E 3T
r

(x +y ) ± 3y„ <VV 3. (u.7.10)
tan ep tan 8r 2 C

U L ° E E E

C E

and

cos0
c

- cose
£

= R
C£

(sine
c

- sine
E

)

,

(4.7.11)

where

R
CE " C {P

C
" PE

exP^(^ - S )] } * {
*C

- qE
exPtA(eJ -

«J)] },

1 - (P c/Pi)
n
d£ - 1 ,

X
c

dq 2 Gj

J_= (Pc
/ Pl )

n d£v- 1 ,

Y
c

dp
~

with definitions similar to the last two equations applying to JL, and
E

Y
£

. The subscripts and superscripts C and E refer to CTC and RTE

loading paths respectively. In equation 4.7.10, the plus sign ( + ) is

used when tane
c

tane
£

is less than zero, and the minus sign (-)

otherwise.

With this repertoire of equations, the next step is to organize the

data in a form suitable for direct computation of the model parameters,
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and the procedure described in the following was developed with a

"spreadsheet" computer program in mind.

Enter the quantities q, p, e , e for the CTC and RTE test in

columns of separate tables. Remember that the data must be obtained

from a pair of tests which start at the same hydrostatic stress. From

the digitized data, compute the slopes dq/de and dp/de at each data

point; the elastic bulk, K, and shear modulus, G, are assigned the

larger of the initial values of the slopes dp/de and dq/de

respectively.

The following data must be known before the main computation can

begin:

1) the isotropic hardening parameter X,

2) an estimate of the constant n,

3) the initial values of the elastic parameters (K and G),

4) the slopes of the straight line CTC and RTE stress paths (Y =

dp/dq), and

5) an assumed axis ratio C.

Begin by entering the table of CTC stress-strain data and select a

representative slope dq/de to be used in establishing the first yield

surface. With this magnitude of dq/de, go into the extension test data

and select the line of data with the same dq/de. If an exact match is

not found, a simple linear interpolation scheme between lines can be

devised. The data contained in these two lines are all that is needed

to solve equations 4.7.10 and 4.7.11 simultaneously for e o and e . In
C E
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carrying out this solution, recognize that equation 4.7.11 is more

amenable in the form

1 + 1 + [2 R
CE

/ (1 - R*
E
)] [ 1 -» 1].

tane_ tanen tanen tan 8,,
C E C E

Once 9„ and 6- have been determined for the selected magnitude of

dq/de, the model parameters associated with F are computed from a

series of equations obtained by merging equations 4.7.2 to 4.7.5,

B = [X_ sine„ ZC - X^ sine,. ZE] + [cos8„ - cose,,],
m C C E E C E

h = X- sine„ ZC - B cose„,
m C C m C

/6 A = 1 [3 Yr (Xp /Y_) - B m C039_],
m -i——-—

r

C C C m C
|tane

c |

ki"
1

- [q
c

exp(-A e
y

)
- q

£
exp(-A e

y
)] * [sine

c
- sine ],

(m ) i , C, . (m) . „
a! = q

c
exp(-X e ) - kj sine

c>

n(m ) i , Cv ,
(m)

Bi = p
c

exp(-X e )
- ki cose

c
,

where

ZC = sine + C Y cose ,

and

ZE = sine„ + C Yr cose^,.
b hi h

The procedure is repeated choosing another magnitude of dq/ds from

the CTC data and calculating the parameters associated with the

resulting surface. If it happens to be more convenient, we could just

as well select dq/ds from the RTE test data and then proceed to find a

corresponding data point in the CTC table.

Almost always, the computed configuration of yield surfaces turns

out to be intersecting, and it usually takes a slight but subtle

adjustment in one or more of the sizes and/ or positions to rectify the

arrangement. Moreover, it is evident that the degree of accuracy
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achieved by such a representation depends directly on the number of

dq/de points or surfaces used to approximate the field of work- hardening

moduli.

4. 8 Verification

The model has been implemented in a computer code, initialized

rigorously from and used to predict the same series of hollow

cylindrical tests used for verification in Chapter 3 (Saada et al.
f

1983). All but the isotropic hardening- parameter A were determined from

the axial compression and extension tests of Saada's data set. Results

of an extensive series of one dimensional consolidation tests, performed

at the U.S. Army Waterways Experiment Station (Al-Hussaini and Townsend,

1975), were used to estimate the parameter A. No effort was spared in

following the appropriate procedures for computing the model constants.

Although this feature is exactly what this type of model should

thrive on, volumetric compression observed in the unloading extension

test had to be wiped out to permit calculation of the parameters. This

problem has also been reported by Mould et al. (1982). Table 4.1 is a

summary of parameters used in this description.

Measured versus fitted response for the axial compression and

extension paths are presented in Figures 4.3 and 4.5, while the

configuration of the surfaces at the start and end of the simulation are

depicted in Figures 4.4 and 4.6. Each of these loading paths recreates

the measured response to a reasonable degree of accuracy. In order to

minimize numerical discrepancies, 800 load steps were used for each

simulation although the solutions were found to be stable with as few as

200 load steps.
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Table 4.1 Prevost Model Parameters for Reid-Bedford Sand

Relative Density = 75*

G = 13500 psi, K - 17680 psi, n = 0.5, C = 3//2, X = 1 30,
Initial effective confining pressure = 30 psi,

Initial void ratio = 0.67,
Number of yield surfaces used to characterize field = 20

no

(m)
a 6

(m)
k
(m)

h
(m)

B
(m)

A
(m)

2 6.408 31.27 6.951 25800 -4766 -.3538

3 8.813 30.94 12.002 22918 -7282 -.5238

4 12.345 31.45 1 8.028 12205 -4379 -.5792

5 12.867 32.02 21 .778 8084 -2904 -.7157

6 15.796 32.43 27.317 5225 -2183 -.7133

7 19.500 34.19 34.345 2873 -1206 -.8528

8 20.001 34.60 36.257 2404 -998 -.8677

9 20.106 35.26 38.134 1963 -783 -.9433

10 23.111 37.66 44.265 1324 -468 -1.085

11 25.289 38.74 48.304 1075 -380 -1.118

12 27.572 40.47 53.206 878 -300 -1.179

13 29.333 41 .71 56.713 736 -2 46 -1.230

14 33.178 44.29 63.402 5 62 -179 -1.317

15 35.950 46.11 68.734 465 -148 -1.364

16 39.355 48.64 75.509 388 -121 -1.434

17 46.289 54.03 89.040 293 -86 -1.510

18 51.052 59.62 101.946 236 -64 -1.6312

19 63.695 70.81 129.011 1 43 -37 -1.7759

20 65.566 77.95 1 44.322 95 -22 -1.8658
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The true test of the generality of a constitutive model is its

ability to predict and not to reproduce its initialization data. Except

for the two calibration paths and the hydrostatic compression path, all

hollow cylinder tests in the series have been predicted, and wherever

possible, each is accompanied by plots of the initial and final

configurations of field of yield surfaces (in Cp'-q subspace). Only

predictions of those stress paths on the triaxial plane— i.e., TC (or GC

0), RTC, and TE (or GT 90) of Figure 2.3— are presented in this chapter

(Figures 4.7 to 4.12). The others have been appended (see Appendix G).

No further study on this model was carried out beyond these hollow

cylinder test predictions.

As can be seen on the stress-strain plots, comparisons of the

calculated and measured results along the no n- calibration paths are

generally not encouraging. Most predictions are much stiffer than the

measured response, but it is only fair to point out that the fitted

curves (Figures 4.3 and 4.5) were also somewhat stiffer than the

experimental data. Close examination of all plots reveals an

unmistakable trend: as the trajectory of the stress path deviates

further from either of the calibration paths, the predictions worsen.

This statement can be verified by inspecting the not so bad prediction

of the DCR 15 test (Figure F. 1 ) and the disappointing GC and RTC

predictions (Figures 4.7 and 4.9).

The results raise many questions on the generality of the

representation and its ability to give good qualitative answers. The

writer believes that its drawbacks stem from a) the lack of an explicit

incorporation of a path independent failure locus, and b) the inadequacy

of a single parameter (A) to model deviation from associativity.
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Despite these comments, the concepts underlying this model are extremely-

appealing, and with some critical modifications, this model may very

well be able capture many aspects of real behavior for complicated

stress paths.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Judging from its performance in predicting response for numerous

stress paths, its intrinsic features, and its relative simplicity, the

proposed constitutive model for granular material does seem to be an

attractive new approach. With regard to its effectiveness in predicting

stress paths, the following conclusions are drawn:

1. The representation predicted remarkably well a comprehensive

series of axial compression paths over a wide range of

densities and confinement pressures (data from Het tier et al
.

,

1984). This attests to the rationality of the formulation in

two respects: a) the density dependence of the material

parameters, and b) the pressure sensitivity of the material

response. The remaining data sets test the rationale for its

extension to more general paths of loading.

2. Very realistic simulations were generated for a wide variety of

linear monotonic stress paths emanating from a fixed point on

the hydrostatic axis (data from Saada et al . , 1983, and Linton,

1986). For this particular test series, inherent anisotropy

and the experimental difficulties associated with extension

loading on sand specimens are thought to be the causes for some

267
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systematic deviation of the measured from the predicted

response.

3. The pressuremeter simulations showed that the model performs

sensibly along a stress path which is in general non-linear and

non-proportional and which rotates on the octahedral plane

(data from Davidson, 1983).

4. The stress paths of Tatsuoka and Ishihara (1974a, 1974b)

demonstrated, primarily in a qualitative sense, the realistic

aspects of the simple representation for the relatively

complicated load-unload-reload loading programs shown in Figure

3.36. The simple model, with no hardening, appears to be

particularly appropriate for reloading paths in which the

direction of the shear stress is completely reversed (data from

Tatsuoka and Ishihara, 1974a). Quantitatively, the calculated

stress-strain curves are about twice as stiff as the measured

data. The source of this problem is the one-parameter form of

the interpolation rule used to model the decrease of the

plastic modulus from its bulk modulus magnitude on the

hydrostatic axis to zero at the limit line.

5. By using some straightforward hardening modifications, the

flexibility of the formulation was illustrated by predicting a)

the influence of isotropic preloading on a subsequent axial

compression path (data from Hettler et al . , 1984), and b) the

accumulation of permanent strain (or cyclic hardening) in a

cyclic uniaxial compression test (data from Linton, 1986).



269

From a practical viewpoint, the model is conceptually easy to

understand and to implement, and it is also very economical from the

computational standpoint. Its parsimony is a direct consequence of

1. the use of a stress dependent plastic modulus, which marks a

break in the trend of placing the consistency condition

central to the determination of the plastic modulus;

2. permitting the material to remain at yield during unloading;

3. hypothesizing that no change in state is a useful first

approximation for sand;

4. using an infinitesimal strain definition of yield instead of

the traditional offset or Taylor-Quinney (1931) definitions;

and

5. according independent status to the yield surface, the limit

surface, and the hardening control surface.

A number of factors dealing with the material constants also lend

credibility to the proposal, and among these are

1. the ability to correlate each constitutive parameter to one of

the "fundamental" geotechnical parameters;

2. the dependence of each parameter only on the initial porosity,

as should be expected for sands; and

3. the straightforward initialization procedure which, because of

the implicit linear mean pressure normalization, necessitates

only input data from two standard experiments: an axial

compression test and a hydrostatic compression test.

Despite the many positive comments, the seriousness of the model's

limitations remain to be probed, and many avenues of research and
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possible improvement are still to be explored. In the opinion of the

writer, the main issues, presented in order of importance, are

1. How serious is the limitation of Figure 3.61 showing the range

of stress increments which can penetrate the limit surface as

elastic unloading or neutral loading paths? What class of

practical problems (if any) will it affect? And if it does

prove to be a major drawback, how can it be circumvented or

corrected? With the theory in its present form, a check should

be included in finite element applications to detect the

possibility of stress points straying into the forbidden zone

outside the limit surface.

2. How significant is the influence of anisotropy on plastic flow

and strength of sands? If anisotropy has a significant

influence on strength but only a marginal influence on the

trajectory of the plastic strain increment vector, an

anisotropic limit surface may be specified in conjunction with

an isotropic yield surface. This possibility is mentioned

because although the data of Saada et al . (1983) suggests that

inherent anisotropy has a marked effect on strength, Habib and

Luong's (1978) experiments showed virtually no influence of

(inherent or stress-induced) anisotropy on the location of the

zero dilation line— an integral element of the yield surface.

However, if it is found that anisotropy also significantly

affects the direction of flow, the isotropic yield surface must

be replaced or modified. One possibility is to use the varying

non-associative flow concept of Daf alias (1981) to model
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anisotropic plastic flow as a deviation from normality to an

isotropic yield surface.

3. What is the impact of the stability in the small assumption?

Having rationalized the shape of the yield surface for

predicting the trajectory of de
P

(i.e., the direction of the

unit normal n) and the field of plastic moduli (K ), the

primary concern here is with the quantity n:da of the flow

rule,

de p - 1 n (n: da)

,

K
P

for general paths of loading. For instance, the magnitudes of

n:do for axial compression and extension paths differ at a

given stress ratio (q /p) because of the pressure-sensitivity

of the yield surface. Table 5.1 is a sampling of these

quantities as gleaned from the simulations of Saada's (Saada et

al., 1983) axial extension and compression tests. Note that

for a non-frictional yield criterion, which has the same unit

normal as the pressure sensitive yield surface at the zero

dilation line, these magnitudes are identical and this dilemma

does not arise. The difference in the magnitudes of n: do at

the lower stress ratios may be a cause for concern because it

affects the predictions of the compaction volumetric strains in

extension, which as one may recall were very stiff compared to

Saada's data. To check the possible influence of this aspect

on the poor predictions of the extension compressive volumetric

.
strains, the writer executed a simulation where the stress

increment da was assumed fully effective in producing plastic
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Table 5.1 Typical Variation of the Magnitude of n: do Along
Axial Extension and Compression Paths

Magnitude of axial stress increment = .225

Maximum stress ratio /J 2 /l! = .300

Mobilized Stress Extension Compression

Ratio , /Jj/Ii n: do n: do

.02 .005 .214

.04 .115 .225

.06 .143 .220

.08 .155 .212

.10 .164 .206

.12 .170 .2 01

.14 .174 .196

.16 .176 .192

.18 .180 .189

.20 .182 .186

.218 (zero dilation line) .184 (note equality) .184

.22 .185 .183

.24 .189 .175

.26 .193 .168

.28 .197 .160

.30 (failure) .200 .153
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deformation throughout the loading in the extension test (i.e.,

n:do = |do|). Although this fully effective loading simulation

predicted a peak compressive volumetric strain an order of

magnitude greater than the true simulation (.28 * 10 vs. .20

x 10 ) , it was itself an order of magnitude less than the

-?
recorded peak compressive volumetric strain of .29 x 10 . For

comparison, note that the observed peak overall volumetric

compaction in the axial compression test, which is very close

-2
to the true prediction, was .18x10 . Therefore, although

this aspect may be a cause for concern, it could not be the

sole cause of the poor prediction of the volumetric compression

observed in Saada's axial extension test. Another option would

be to probe the shape of the yield surface in extension stress

space to see if its difference from compression stress space is

as pronounced as the data suggests.

In a less general context, many other aspects of the model may be

improved; for example

1. A more complicated interpolation rule may be selected for the

field of plastic moduli to simulate stress-strain curves in

which the plastic modulus decreases more rapidly below the zero

dilation line.

2. Degradation effects as well as a stress path memory variable to

monitor the degree of stress reversal may also be used to

improve the hardening option. If one follows the approach used

in this study, these variables will only influence the plastic

modulus

.
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3. A phenomenological (second order) fabric tensor may also be

included in the formulation to keep track of inherent and

induced directional stiffness properties. The invariants of

this tensor can also serve as a measure of the intensity of the

anisotropy. One such approach, which can be applied directly

to the simple model, has been presented by Dafalias (1981).

The following can be concluded regarding the study of the Prevost

(1980) model described in Chapter 4:

1. Although this model has conceptual appeal and reproduces the

input response along its calibration paths, the calculated

results along non-cali brat ion loading paths were very

disappointing. The author believes that its main drawbacks

stem from the lack of an explicit incorporation of the failure

locus and the particular non-associativity assumption used to

predict the direction of the plastic strain increment vector.

2. The initialization procedure is cumbersome and requires a great

deal of effort. The computed yield surfaces invariably

intersect, and the subsequent manual rearrangement procedure is

extremely time-consuming. In addition to other tests, the

parameter evaluation scheme requires data from an axial

extension test, a test which, owing to experimental

difficulties, is not yet routine in most commercial soil

testing laboratories.

3. The model parameters depend on the initial stress state, and it

is not clear if and how they can be normalized.



APPENDIX A

DERIVATION OF ANALYTICAL REPRESENTATION OF
THE DILATION PORTION OF THE YIELD SURFACE

Start by considering the following general second order equation

(defined for convenience in an arbitrary rectangular Cartesian x-y

coordinate system) to which the relevant constraints shall be

subsequently applied:

F=ax 2 +by 2 +cxy+dy+ex+f=0. (A.I)

As a first step, equation A. 1 can be divided by the coefficient of

x 2
, "a", and then the constants can be renamed such that b = b/a, c =

c/a, etc.; this algebraic operation results in

F= x 2 +by 2 +cxy+dy+ex+f=0. (A. 2)

Inserting the stress invariant variables in place of x and y in

equation A. 2 yields

F = I x
2 + b J 2 + c I

x /J 2 + d /J 2 + e I, + f = 0. (A. 3)

Equation A. 3 is now subjected to four consecutive constraints to

ensure that the function is continuous with the ellipse and satisfies

certain boundary stipulations.

*
Constraint #1 ; F = 0atl 1 = /J 2 = 0; this implies that the constant "f"

is equal to zero, and as a result, equation A. 3 reduces to

F = 1/ + b J 2 + c iyj 2 + d /J 2 + e Ij =0. (A. 4)

Constraint #2 : at Ij = /J 2 = 0, d/J^d^ = S, and this condition

establishes that

275
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d/J 2 /dl
l

= -BF/aij * 3F/9/J 2

= - (2I
X

+ c /J 2 + e) * (2 b /J 2 + c Ii + d) - S,

from which we see

e = -S d . (A. 5)

Substitution of equation A. 5 into equation A. 4 gives

F = I, 2
+ b J 2 + o Ii/J 2 +d/J 2 -SdI, =0. (A. 6)

Constraint #3 : at I x = (I /Q), /J 2 = N (I /Q). Substituting this

information into equation A. 6 shows that

d = (I /Q) [1 + bN 2 + cN] [S - N]. (A. 7)

And now we can substitute A. 7 into equation A. 6 to obtain

+ bN 2
+ (

[S - N ]

F = I x

2
+ b J 2 + c iyj 2 + (I /Q) [1 + bN 2

» cN] {/J* - S Ij}.

(A. 8)

*
Constraint #4 : at the zero dilation point [I x

= I /Q, /J 2
= N (I /Q)],

d/J
2
/dI

1
= -3F/3I, * 9F/3/J* - 0,

which implies that 3F/3Ij = 0. Using these requirements in equation A.

8

results in

2 I, + c /J 2 - S (I /Q) [1 + bN 2
+ cN] = 0,

[S - N ]

from which we then see that

c = (S/N 2
) - (2/N) - S b. (A. 9)

Finally, the substitution of equation A. 9 into equation A. 8 gives

the following expression for the yield surface characterizing the

meridional section between the limit line and the zero dilation line:

F = I
2

+ b J* + [S_ - 2 - Sb] Ij/J* +

N 2 N

(I /Q) [1- bN] {/J* -3 1!}= 0. (A. 10)
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After exhausting all available constraints, inspection of equation

A. 10 reveals that we have eliminated all but one independent parameter

(i.e., "b") from the original set (i.e., "a", "b", "c", "d", "e", &

"f"). The slope S is usually fixed at a magnitude of 1.5.

Range of the parameter "b"

Following the standard procedure outlined by Beyer (1981, p. 250),

the restrictions on the parameter b are investigated by looking at how

its magnitude affects the nature of the graph of this quadratic in I t

and /J 2 . Table A.1 gives the details of the general procedure. For the

particular function derived here, equation A. 10,

A = H (I /Q) 2 O- bN) 2 (S - 1)
2

,

4 N N

J = b-J_[S_-2- Sb] 2
,

4 N 2 N

1=1 + b, and

K = - (1 + S 2
) I (I /Q) 2 O- bN) 2

.

4 N

From these equations, we see that

b = (1 - 2)
2

(A. 11)

N S

identifies a parabolic conic section. Magnitudes of b greater than that

specified by equation A. 1 1 give ellipses and those smaller than this

magnitude give hyperbolas. Furthermore, to ensure that A ^ 0, b must

not be exactly equal to J_. In fact, If b - 1_ the quadratic equation

N 2
N 2

degenerates to case 9 of Table A.1 to give the equation of the zero

*
dilation line VJ 2 /I 1

= N. As b > -», the equation of the yield surface,

equation A. 10, simplifies to
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Table A.1 Formulas for Use in Inspecting the Nature of the
Quadratic Function Describing the Dilation Portion of

the Yield Surface

General quadratic in x and y: ax 2
+ 2hxy + by 2 + 2gx + 2fy + c

Definitions: A = a (be - f
2

)
- h (he - gf ) + g (hf - bg)

J = ab - h 2

I = a + b

K = ac - g
2 + be - f 2

K CONIC

real ellipse

imaginary ellipse

hyperbola

parabola

real intersecting
lines

conjugate complex
intersecting lines

< real distinct
parallel lines

> conjugate complex
parallel lines

coincident lines

CASE A J A/I

1 4 > <

2 * o > >

3 t <

4 t>

5 <

6 >

7

8

9
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F = J 2 - S iyj* - (I„/Q) N {/J* -3 1!}= 0,

or alternatively,

F = (/Ja - S IJ (/J* - N Io_) =0,

Q

which shows that it represents two straight line portions: the

horizontal line /J 2 = N (I /Q) intersecting the line Jl z /l x
= S.

Therefore, from these two extreme cases, we see that the parameter b

must lie in the range

-» < b < J_. (A. 12)

N 2



APPENDIX B

COMPUTATION OF THE GRADIENT TENSOR TO THE YIELD SURFACE

The gradient to the yield surface is

3F = 9F dli + 3F d/J 2 + _3F de, (B.1)

3o 31 x do 3/J 2 da 96 do

where (cf. equation 2.2.2.33)

sin 36 = [3/3 (J 3 //J 2
3
)]. (B.2)

2

From equation B.2 we find that

d6
m __/3__ { 9J_3 1_ _ 3 J 3 9/J 2 } (B.3)

do 2 cos 38 3o [/J 2 ]
3

C/Jz]" 3o

Substitution of equation B.3 into equation B.1 yields (in indicial

notation)

3F = VF = 3F 31 x + { 3F_ - /3 _ 3 J 3 9F } 3/J 2
+

da. . 31 ! 3o. . 3/J 2 2 cos 36 [/J 2
]" 36 3o . .

{ /3 1 3F } 3J 3 (B.4)

2 cos 36 [/J 2 ]
3

36 3o. .

where

dli = 6
±j.

(B.5)

do. .

ij

d/J 2 = 1 3ljf (B.6)

do., 2/J 2

dJ 3 = {a' 3 }

T
+ 1 J 2 6 , (B.7)

o J

do. .

5

ij

and
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IS 3) - IW22S33 S 23 ), (SHS33 S 13 ),(S 11 S; ),

^ S 23 S 13 S
3 3 S 1 2 I > V S 1 3 S 1 2 ~ S

1 1
S 2 3 ) » ( S 1 2 S 2 3 ~ S 22 S 13 )}.

In order to find the gradient tensor, we need therefore only to

compute the partial derivatives ^F , 3F , and 3F_ of equations 3.3.3.1

31 ! a/j 2 ae

and 3.3.4.1. We find from equation 3.3.3.1,

3F

91

1

2(Ii " U),
Q

and

9F_ = 2 {(Q-D/N? 2 /J a ,

9/J 2 Cg(e)] 2

3F = - 2 {(Q-D/N} 2
J

s

(B.8)

(B.9)

(B.10)

38(e) [g(e)] 3

Also, from equation 3.3.1.8, recognize that

dg(e) = 6R (1-R) cos 36 (B.11)

d6 {[1+R] - [1-R] sin 36}
2

which is to be used in the following:

3F = 9F dg(9) .

9e 3g(e) de

And for the more complicated choice of g(e) (equation 3.3.1.6),

dg(9)

de

du

de

dv

de, (B.12)

where

u = A (1-R 2
) + (2R-1) /[(2+B) (1-R 2

) + 5R 2 - 4R],

v = (1-2R) 2
+ 2(1-R 2

) + B(1-R 2
),

dB
du = (1-R 2

) dA + I (2R-1) (1-R 2
) de

,

de de 2 •[(2+B)(1-R a
) + 5R 2 - 4R]

dv = (1-R 2
) dB,

de de

A = /3 cose - sine,
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and

B = cos29 - /3 sin20,

dA = -/3 sine - cose,

de

dB = -2 sin29 - 2/3 cos29.
de

Similarly, from equation 3.3.4.1, we find that

3F = 2 I, + [S - 2 - Sb] /J a _J - (I /Q)[J- bN] S, (B. 13)

31

!

N 2 N Cg(e)] N

9F = 2 b /J 2 + [S - 2 - Sb] i! 1 +

3/J 2 Eg(e)] 2 n 2 n [g(e)j

(I /Q)C1 " bN] 1
, (B.14)

N [g(9)]

and

3F = - 2 b J 2 - Cs_ - 2 - sb] iyj 2 1

3g(e) [g(e)] 3
n 2 n [g(e)] 2

(I /Q)C1- bN] 1 /J 2 . (B. 15)

n [g(e)] 2



APPENDIX C

EQUATIONS FOR UPDATING THE SIZE OF THE YIELD SURFACE

When the stress state resides on the consolidation portion of the

surface (i.e., when /J 2 < N),

Ii

{
- B

x ± /(B
t

2 - 4 A 1 C 1 ) } if Q > 2 (C.1)
2 A,

" C
l
/B

l if Q = 2 (C.2)

min {
- Bj ± /(B^- 4 k x C 1 ) } if Q < 2 (C.3)

2 h
x

where

A
x

= 2 - 1,

Q

B, = -2 I^Q,

and

Cx = I
2

+ ( Q - 1)
2 J*.

N 2

*
For the dilation portion of the yield surface, when /JL > N, we

have

Io = " P_l. (C.4)
Ex

where
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Dj = I
2

+ b J* + [S_ - 2 - Sb] Ix/J a ,

N 2 N

E x - 1 ( 1 - bN) (/J 2 - Si!).
Q N



APPENDIX D

PREDICTION OF HOLLOW CYLINDER TESTS USING PROPOSED MODEL
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APPENDIX E

PREDICTION OF HETTLER »S DATA USING PROPOSED MODEL
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APPENDIX F

COMPUTATION OF THE BOUNDING SURFACE SCALAR MAPPING PARAMETER 6

When the stress state resides on the consolidation surface (i.e.,

ii

when /J, O),

B = - B 2 ± /(B 2
2 -4 A 2 C ? ) , 1 < 6 i «

2A 2

where

A 2 - I x
a

+ {(Q-D/N} 2
J 2 ,

Lg(8)] 2

B 2 = - 2 (I /Q) I lf

and

C 2 = I
2 {(2/Q)-!}.

For the dilation surface, when /J 2 > N, we have

Ii

E 2

where

D 2 = - (I /Q)D - bN] {_J /J 2
- S IJ,

n Cg(e)]

and

E 2 = Ii
2

+ b J 2 + [S - 2 - S b] I,/J 2 1

Cg(e)] 2 n 2 n Cg(e)]
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APPENDIX G

PREDICTION OF HOLLOW CYLINDER TESTS USING PREVOST'S MODEL
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