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Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

APPLICATION OF A BOUNDING SURFACE PLASTICITY LAW
TO THE PREDICTION OF PRESSUREMETER TESTS

By
Devo Seereeram
December, 1983
Chairman: Dr. M.C. McVay
Major Department: Civil Engineering

In this thesis, the performance of a bounding surface
plasticity constitutive relationship, successfully
implemented in previous research efforts to model the
triaxial test and the moving wheel stress path, is examined
for consistency and reliability under generalized loading
conditions.

Concurrent with the development of this bounding
surface (B.S.) theory during the first half of 1983, another
unrelated research project at the University of Florida's
geotechnical testing laboratory focused on gathering and
analyzing data on cast-in-place self-boring pressuremeter
tests under centrolled conditions (i.e., a calibration
chamber). These tests served as the principal source of

"generalized loading path" experimental data which was used
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for comparison to predictions generated by the constitutive
modeal.

As research progressed with the aid of a modified
finite element program, some deficiencies were noted in the
original bounding surface theory which made it necessary to
reformulate the model, and the version presented herein
{Fall, 19832) includes all modifications, but should by no
means be considered as its final form.

Results of this study indicate that the boundary con-
ditions play a major role in the solution to the pressure-
meter expansion problem. Of the two cyclic pressuremeter
tests investigated, one of the predictions may be adjudged
as being very good while the other is only moderately so.
The author has serious reservations in interpreting the Kn
consolidation simulation, and it is clearly obvious that
further research is needed to address the problem or
problems which are restricting the prediction of realistic
results along this stress path. Nevertheless, the bounding
surface plasticity formulation is indeed a novel approach to
modeling cyclic elasto-plastic stress-strain behavior of
soil, and it is guite possible that the fundamentals of this
plasticity approach may serve as the precursor to the future

attempts by engineers to mathematically model soil response.

Jflkt 195,

Chairman /




CHAPTER 1
INTRODUCTION
1.1 General

The theoretical formulation of rational constitutive
relationships to predict the load-deformation response of
soil media subject to complex static and cyclic excitations
must account for a stress-strain phenomena which is known to
be ncn-linear, inelastic, compressive and/or dilatative,
anisotropic, hysteretic, stress history- and time-
dependent. Such an all-encompassing mathematical model, or
even one that is only applicable over specified regicns of
interest, will present the geotechnical practitioner with a
potent research and design tool to solve increasingly
sophisticated problems which are usually not amenable to
analysis by traditiocnal approaches based on empirical
methods correlated to field tests or elementary soil
constitutive models.

In response to the need for more accurate predictions
of the performance of soils under lcad, several recently
developed methods of analysis and models of soil behavior
have appeared in published literature, particularly, the
proceedings of the NSF/NSERC (National Science
Foundation/National Science & Engineering Research Council,

Canada) and ASCE (American Society of Civil Engineers)
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sponsored workshops on limit equilibrium, plasticity and
generalized stress-strain in geotechnical engineering. Even
with this vastly improved capability to predict soil
deformation and stability, opinions still differ as to which
models provide the most accurate and reliable predictions,
and as to whether or not it is in fact possible to
realistically model actual soil behavior over the entire
range of stress-strain performance for most typical soils.
The root of the current dilemma presently faced by many
users in selecting the "most appropriate" soil rheclogical
model can be traced to the basic methodology used in
proposing most of these yield/failure theories and
constitutive relationships. This fundamental approach
involves hypotheses based on data obtained from extensive
laboratory studies on certain well documented soils, and as
Yong and Ko (p. 49, 1980) succintly state "the relationships
developed therefrom have been obviously conditioned to
respond to the soils tested as well as for the particular
test system constraints, and therefore the parameters used
and material properties sensed have been chosen to fit the
test circumstance. Extension and projection into a more
general framework for wider use do not appear to be
sufficiently well-founded." John Christian (p. 61, 1980),
senior consulting engineer at Stone & Webster, puts forward
yet another pertinent point of view on the current status of
constitutive models in geotechnical engineering: ". . . it

should be the objective of every developer of a censtitutive



model to make the model understandable to potential users.
The temptaticn to express the model in complicated
mathematical notation and arcane terminology is almost
overwhelming . . . failure to describe new constitutive
models in terms that are sufficintly simple, clear, and
unambiguous is probably the greatest single barrier to the
application of such models to practical problems."

Having identified the potential problem areas that
exist in constitutive scil modeling, it is now necessary to
outline a means of probing the performance and hence the
ultimate usefulness of any particular constitutive
relationship; this scheme should at least include a study of
the following (from Ansal et al., 1980): {a} the
versatility of the theory to characterize experimental data
obtained from a variety of tests, (b) the ability of the
resulting relationship to predict behavior for conditions
other than those which were used to calibrate the model, and
{c) the ease with which the formulation can be adopted to
the solution of practical boundary value problems.

1.2 Purpose

Rate independent bounding surface plasticity
constitutive medeling has been at the focus of recent
research efforts at the University of Florida, and the
facility of this model to predict the triaxial test stress
path and the moving wheel stress path has been ascertained
in previous research (Taesiri, McVay & Townsend, 1983). It

is the purpose of this thesis to investigate the



applicability of this model in simulating stress-strain
response under generalized loading paths. The "general
stress path" load-deformation data chosen for analysis is a
series of pressuremeter test results extracted from another
research project (Davidson, 1983) which concentrated on a)
developing techniques for performing self-boring
pressuremeter (SBPM) tests in a large-scale sand chamber,
and b) the evaluation of currently available techniques of
interpreting the results of SBPM tests.

Two secondary objectives were accomplished as a direct
consequence of the primary goal of this thesis: 1) a
computer program capable of modeling axi-symmetric loading
conditions was modified such that it now has the capacity to
execute elasto-plastic incremental analysis; in its
contemporary form, it is feasible to accomocdate most of the
common elasto-plastic constitutive equations, but for the
purpose of this study, it was conly necessary to incorporate
the bounding surface model into the computer code; and 2)
valuable academic information on the stress paths and the
stress distribution of an undisturbed soil mass stressed by
an expanding cylindrical cavity was gleaned from the finite
element analysis.

1.3 Scope

There were a few apparent shortcomings in the version
of the bounding surface model developed at the University of
Florida (Taesiri et al., 1983) which required some

modifications before it could be applied in the simulation



of the pressuremeter test. Although these refinements are
included herein, the Taesiri et al. (1983) reference should
be consulted for a more complete description of the bounding
surface model since certain unused aspects of his model were
not included in this thesis because of space restrictions
and the protracted nature of these equations. Also, this
bounding surface constitutive model was developed
specifically for dense sands so all predictions presented in
this report were for the sequence of pressuremeter tests in
dense sand samples,

An important limitation of the finite element program
is its inability to deal with a constant stress boundary
conditions, and hence it was necessary to approximate the
idealized situation in the calibration chamber by making
some justifiable adjustments to the finite element meshes.

This report consists of seven chapters. A brief review
of constitutive eguations used in soil mechanics is
presented in chapter 2 with particular emphasis on Lade's
elasto-plastic model and the particulate approach of Chang
(1983) . Chapter 3 is devoted entirely to a description of
the theorv and calibration procedure of the bounding surface
plasticity model used in the simulation of the pressuremeter
tests which are then in turn explained in chapter 4. The
numerical technique and the computer procedure used in
modelling the pressuremeter tests and other loading
conditions are described in chapter 5, and chapter 6

presents and discusses the results of this numerical



analysis. Finally, in chapter 7, conclusions and
recommendations are made on the performance of the

constitutive model and the finite element computer program.



CHAPTER 2
REVIEW OF SOIL CONSTITUTIVE LAWS

2.1 Introduction

As detailed in the first chapter, the stress-strain
relation of soil is non-linear and much mecre complex than
the response generated by classical linear elastic theory.
Recognition of this phenomena has led to four different
methods of formulating the constitutive laws of geclogic
media: 1) curve £fitting, 2) non-linear elastic theories, 3)
plasticity theories (including viscous behavior), and 4)
endochronic theories. 1In this chapter, a summary of some of
the more popular soil models are reviewed with particular
emphasis on two examples of plastic stress-strain
relationships based on both a continuum and a particulate
mechanics field theory. The chapter that follows provides a
detailed description of what is perhaps the most innovative
attempt to model the elasto-plastic cyclic locading of soils:
a bounding surface plasticity model. The bounding surface
model is the constitutive relation chosen in this report to

simulate the pressuremeter test in cchesionless soil.



2.2 Statistical Methecods

There are several curve-fitting procedures which were
developed to reproduce typical stress-strain curves for
non-linear material. The bilinear model consists
essentially of defining both an initial and an ultimate
value of the Young's modulus which are interchanged when the
yield stress has been attained. With a constant Poisson's
ratio, this model suffers from the disadvantage of
effectively decreasing the bulk modulus the same order of
magnitucde as the shear modulus; this results in reasonable
predictions of the shear distortion but unrealistically
large simulation of wvolumetric compression at failure. This
problem may be remedied by holding the bulk meodulus constant
while the shear modulus is reduced. Further refinements led
to the piecewise linear models which defined straight line
portions of the stress-strain curve for different stress
levels. Data for these multi-linear models consisted of
tabulated stress-strain points which were used to compute
the tangent modulus between two points,

E, = i~ C31 (2.2.1)
E. = E.
1 1=1

2.3 Non-linear Elastic Approach

Clough and Woodward (1967) were among the first to
employ non-linear modeling of soil in a finite element
idealization; they studied incremental construction analysis

by revising the wvalues of the elastic constants by an



interpclation scheme. Under the assumption of plane strain,
two elastic parameters were used: the bulk modulus, Mb’ and

the distortional meodulus, Md’ defined as

Hb = E

201 + VI (I = 2V] (2.3.1)
M. = E (2.3.2)
d 201 + W)

Initial values of the modulii above were determined
from the elastic modulus computed at the origin of the
stress-strain curve and an assumed value of Peoisson's ratio.
At the end of analysis for the first construction step, the
state of stress in each finite element was determined and
the slope (E = Mt] of the triaxial test curve was
approximated from a series of typical triaxial test data for
the soil under investigation. Based on the new value of Mt'

the following equation for the Poisson's ratio was then

solved:

(2.3.3)

With this revised value of Polisson's ratio, a new
distortional modulus is computed from equation 2.3.2 while
the bulk modulus remains unchanged throughout the analysis.

A hyperbolic equation was found to represent a plot of
deviatoric stress versus axial strain in triaxial

compression (Kondner, 1963). The utility of such an
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amenable mathematical relation was embodied by Duncan
(Duncan & Chang, 1970) in the development of sophisticated
non-linear elastic equations to aid in the study of
soil-structure interaction by numerical methods. This
method does however possess certain disadvantages (Desal &
Christian, 1977): a) it is valid for stress below the peak
of the stress-strain curve, b) when anisotropy or other
complications appear, the simplicity of the relation begins
to disappear under correction factors, ¢) dilatant materials
cannot be treated since they require a Poisson's ratio of
greater than 0.5 which can create potentially severe
problems (such as lack of unigqueness) in numerical
solutions, d) the relationship is based directly on
experimental observation with very little physical
justification, and e) they work well so long as the stresses
and strains are similar to those under which the
experimental observations were made.

2.4 Failure Criteria

Most analyses in geotechnical engineering are presently
based on deriving a factor of safety after a limit
equilibrium solution to the problem is obtained. Although a
failure criterion does not prescribe the constitutive nature
of a soil per se, it does play a significant role in
defining the ultimate strength of the material and an
approximation to the yield surface used in plasticity

theorv. Perhaps the simplest and most utilized failure
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criterion is that proposed by Coulomb in 1776; the failure
state of a frictional material can be represented by what is
commonly termed the Mohr-Coulomb failure principle:
T = tand —c =0 (2.4.1)
where ¢ and ¢ denote the cohesion and angle of internal
friction respectively.

Although it has been widely used in the past, this
criterion does have its restrictions: a) the influence of
the intermediate principal stress on shear strength is
neglected; and 2) the failure surface exhibits corners or
singularities in three dimensional stress space (Mizunc &
Chen, 1980). A three dimensional apprecximation to the
Mohr-Coulomb criterion, which has instead the shape of a
circle in the octahedral plane, was introduced to overcome
the limitations mentioned previously (Drucker & Prager,
1952). This surface is established in terms of the

invariants of stress:

F = al, + w’Jz - k=0 (2.4.2)
where I = 1lst invariant of stress tensor
J2 = 2nd invariant of deviator stress tensor

and k and @ are material constants which can
be expressed in terms of @ and c:

o = 2 sing (2.4,3)
3(3 - sind)
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k = 6 ¢ cosd
3(3 - s51n9) (2.4.4)

Two additional failure criteria are introduced in the
next paragraph; although each will be discussed in the
context of serving as a yield conditions (Tresca and
von-Mises), it must be noted that these functions can
similarly be used tc identify failure states.

2.5 Classical Plasticity Theories

The elastic theories described previously express
stress directly in terms of strain by a tangent modulus;
however, plasticity theory is formulated on an incremental
stress-strain basis so it is imperative to specify the
loading path in order to compute the constitutive equation.
For a perfectly plastic material, a yield function, F, can
be defined in terms of stress or any other "plastic state
variable" as separating stress states below which the
response of the material is elastic and above which the
response is plastic. The theory of plasticity in its early
development focused on modeling the constitutive behavior of
polycrystalline metals; two classical yield criteria
unfolded as researchers attempted to distinguish the elastic
range from the stress states in which plastic flow occurs.
The Tresca yield criterion is based on a maximum shear
stress, k, and in terms of the stresses for plane strain,

the criterion may be stated as

F(o) = (2X_¥¥)® + ofxy = k& =0 ke 513
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The other classical yield function is known as the
Von-Mises yield condition, and this postulated function is
based on the theory of maximum energy of distortion - it is
expressed here in terms of principal stresses.

= - 2 s
F(0) = (0, = 0,)% + (0, = 05

Now that the stress combinations which permit inelastic

- 1R 2 < B
)& + {53 Jl} + 2k (2.5.2)

response have been defined, the post yield behavior - 1i.e.
relationship between plastic deformation increments and
stress components, and the change in the yield condition
with work hardening - must be characterized. One of the
basic concepts of plasticity theory is the plastic potential
and the asscciated flow rule; this states that when a
material undergoes plastic flow, the direction of the
incremental plastic strain tensor is in a direction normal
to the yield criterion (this relationship is also known as
the normality rule):

5 AP

deij = ?‘*agij (2.5.3)

where A\ is a scalar,

This relationship follows from the principles of
thermodynamics and its application in deriving the
constitutive laws of scils is not discussed further here
since it has been extensively treated in many texts
{(example: Jain, 1980).

2.6 Critical State Soil Mechanics

The next concept that is introduced is that of critical

state soil mechanics (Schofield & Wroth, 1968) and its
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physical significance in modeling the response of soil. The
strength of a material is not only governed by the effective
normal stress across the failure plane but alsc by the
number of particles per unit volume (i.e. its relative
density). Also, the shear-volumetric behavior of a sand is
a function of its void ratio (or its relative density);
"loose" specimens compress when subjected to shear stresses
while "dense" samples undergo an initial compacticn followed
by dilation. At large strains, both "loose" and "dense”
cohesionless soils approach a constant void ratio which
indicates that there is no further volume change. This void
ratio is known as the critical void ratic and defines the
boundary between the dense and loose states of a granular
material. Since the strength is related to the void ratio
and the effective normal traction, the strength of the sand
- usually referred to as the ultimate or residual strength -
is constant once the material has achieved this critical
state. Two equations are used to characterize this well
defined critical state which causes the soil or other
granular material to flow as a frictional fluid if
continucusly distorted:

q = Mp (2.6.1)

.__.
]

v + Aln(p) (2.6.2)
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where M, I', and ) are basic scil properties and
p = effective pressure
g = deviator stress
v = specific volume

The first equation determines the magnitude of the
deviator stress required to keep the soil flowing
continuously as a product of a frictional constant M with
the effective pressure. The well-known relationship between
void ratio and normal effective stress (e vs. log p) is
expressed in the second equation. The significance of the
critical state hypothesis will become more apparent after
the presentation of the bounding surface plasticity mcdel in
which this concept is an integral part in the simulation of
the shear-dilation properties of dense or over-consolidated
spils.

An attempt is made in this chapter to critique some of
the available formulations for investigating soil rheclogy;
the discussion presented here is by no means exhaustive,
many credible plasticity models were not mentioned owing to
space limitations. For further reference, the author
recommends any of the specialitv conference journals on
limit equilibrium and plasticity in geotechnical engineering
listed in the bibliographv. The rest of this chapter is
devoted to a moderately detailed description of two
plasticity models: Lade's elasto-plastic model (Lade,
1980), and the particulate approach as prescnted by Chang

(1983).
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2.7 Lade's Elasto-Plastic Soil Constitutive Model

2.7.1 Introduction

This fourteen-parameter model (Lade, 1980) is used to
simulate several aspects of the stress-strain behavior and
strength of soils; these phenomena include non-linearity,
strain softening, stress-path dependency, Kc = loading
conditions, influence of both minor and intermediate
principal stresses, shear-dilatancy behavior (as a function
of confining pressure), and pore pressure development with
resulting effective stress paths. The model does, however,
suffer from the inability to simulate: a) soil response
during large stress reversals, b) cyclic loading, and c) the
behavior of soils which are initially anisotropic.

2.7.2 Mathematical Development of Theory

The total incremental strain tensor is attributed to
three types of deformaticns: an elastic component, plastic
expansive strains, and plastic collapse strains,

dEij = dﬁij + deﬁj + dEEj {2.7.1)

Figure 2.1(a) shows the relative contribution of each
strain component for a drained triaxial compression test.
Elastic strains are computed from Hooke's Law while both
plastic strains are calculated using plasticity theory based
on a continuum mechanics appreach. The theory and

computational procedure for each component of the

incremental strain is treated separately.
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2.7.3 Elastic Behavior

The recoverable (elastic) strains are computed using
the unload-relcocad elastic modulus (depicted in figqure 2.1a)

which is defined as follows:

= a n -
Eyy = Kur » Pa + (23 (2.7.2)
P
=
where Eu = unload-reload Young's modulus
p. = atmospheric pressure (same units as Eur]
Ku_ = dimensionless constant known as modulus
number
n = exponent (also a dimensionless constant)

Both parameters Kur and n may be determined from
unload-reload cycles in triaxial compression tests. A
log-log plot of (E__/P_ ) vs. {‘3‘3@&1 yields the value of n
and Ry while the Poisson's ratio is usually assumed to be
0.2 (Lade,1980). In summary, three parameters are used to
describe the elastic response of the soil; this differs from
classical elasticity in that the elastic modulus is assumed
to be a function of the confining pressure.

2.7.4 Plastic Compressive Behavior

These strains are based on the application of
plasticity theory to a spherical yield surface with its
center at the origin of principal stress space. Any
yielding which results from an outward movement ol This cap
does not lead to eventual failure. The rationality of this

concept manifests itself in the quantitative modeling of
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plastic behavior during an isotropic compression test in
which, of course, it is impossible to fail a specimen of
soil.

In terms of the first and second invariants of stress,
the yield criteria (spherical yield cap in figure 2.1b), fc'

has the following form:

- 2
fc I, + 21, (2.7.3)
where I1 = 0y +q + 04
I, =~ [5102 + c253 + 0301] in terms of

principal stresses
Since an associative flow rule is postulated for this
yield criteria, the plastic potential function is coincident
with the yield function (i.e. g, = £.). From the normality
rule, the relationship between the plastic strain and the
yield surface, F, is expressed in general form:

oF (2.7.4)

90, .
1]
where 1is a constant of proportionality

95 = A

For the case of the collapse (or compressive) strains,

aeS. = & % (2.7.5)
13 < 906, .
ij
or in its final form,
de,.© = YW g . (2.7.6)
i] — i3
c

where dwc is an increment of work per unit volume for a

given value of fc and a given increment of dfc'
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The plastic cocllapse work can be computed from:

W =
c

Fo., .
1]

T c
dEij

During isotropic consclidation,

— C [
W, = Jo,, . dejy + Jo,, . de,,
but
%1 T Oam B 85
C o i c‘:
and dell + dEz2 + d533 = d=
therefore,
_ .c
Wc = fd33 dt,v
also, fc = I,2 4 212
(0,7 + 9y + 935) (991 + %2 * %23

) - 2(35;52)

o
33

t2:7 1)

B o

) d”33
(2.7.8)
m33 ll}
(2.7.9)

The relationship between Wc and fc is represented as

W =
L

where

C

c

n

i

collapse modulus

collapse exponent

(2:7+10)
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Total Plastic Strain Increment

Plastic Expansive Strain Increment

Plastic Colapse
Strain Increment

Hydrostatic Axis

Figure 2.2 Schematic Diagram of Yielding Process with

pPlastic Strain Components Superimposed 1in
Triaxial Plane

(After Lade, 1980)
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Parameters p and ¢ can be determined from a log-log
plot of [WCKPa} VS, EfcfPa=1 from which the slope is equal
to p and the intercept of the {chPah axis at {ECIPEI} =1
is equal to C. The plastic collapse work is subsequently
determined from the following eguation:

aw_ = C. p. Pa.{ Pa’ffc}l_p . d[fcfPail (2.7.11)

The wvalue of dwc {from egn. 2.7.11) is used for

computing the plastic ccllapse strains in equation (2.7.6).

2.7.5. Plastic Ex¥pansive Behavior

The eguation of the curved conical yield surface (in
terms of the 1lst and 3rd invariants of stress) used in

plastic analysis of the expansion strains is expressed as

£ = [Ei B 2?1 lil;n
P = I - 'F
3 a
£ = n at failure (2.7.12)
2] 1
where 13 =011 + 950 - 933 (in terms of principal stresses)

and ﬂl and m are material parameters for sand at a given
density.

The value of Ny controls the apex angle of the failure
surface. Both these parameters are determined from a
log-log plot of I:Ij‘:KI3 - 27) vs. {PafIl} at failure. Unlike
the vield criteria used for the collapse strains, Lade
implements a non-associative flow rule for this plastic
strain component. The plastic potential function, gP, is

written as follows:

g, = Ii - (27 + 1

m
p {PafIl} ) - 13 (2:7:13)

2
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In this expession, a new constant, ﬂz, is introduced;
its value depends on fP and the minor principal stress, 0O4,.
A conventional triaxial compression test 1is used to

determine N, from the following expression:

B
W
n = 3I(1 + ].Ii _ 27, 3.

0

p
(% 107 O (2.7.14)

( m P - P
P /I o (0400 + V5. 95) I,/I;.m(1 + V)]

where WP = - dngdipl is the plastic expansive
conjugate of the elastic Poisson's ratio, V. Note that
these plastic incremental strains do not include the elastic
or plastic collapse components. The expression above for My
can be simplified for computational purposes to this form:

Ny = S.fp + E.#E;7§; S (2.7.15)
which yields three additional constants (R,5, & £t} to
describe the plastic potential function. These model
parameters are derived from a plot of n, vs. fp: the slcpe
gives the constant 5 while the intercept is equal to
parameter t. An indication of the variation of S and t with

confining pressure (o0,.) is mathematically represented by

33
the value of R.

The next step in the development is the hardening of
the conical surface based on plastic expansive work which
can be calculated from:

W, = Jo: acP (2.7.16)

The relationship between fP (egq. 2.7.12) and wp is

approximated by the following exponential function:
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o -b
fp = a.e WP{WPKPa]

where a, b, & ¢ are constants at a specified value of

V9 for g 5 0 (2.7.17)

gy
With data given at a particular confining pressure, the

constant g can be determined from the following equation:

q = log {Wp'peak!wp'ﬁﬂl - AL= wp'ﬁﬂpr.peak]'434 (2:7.18)

log {nlifpﬁﬂl

where .434 = logarithm of base for natural logarithm, e
wp'peak = peak plastic work corresponding to
_n . :
IP ; (H.e. failure)
Wp 60 = plastic expansive work at a stress level

1

As previously mentioned, the value of g computed in

of £ = 0.60 x n
P

equation 2.7.18 is based on a triaxial test at a specific
confining pressure; it is thereifore necessary to model the

change in g with confining pressure, © by this expression:

3!’
qg= o+ E{G3IPE} (2.7.19)
The model parameters o and B for this proposed linear
relationship are obtained by performing a linear regression
of g vs {GBHPa].

The constants a and b are computed acceording to:

- 1/q
a = n(e.P /W (2.7.20)

p,peak]

and

b 1/q. (2.7.21)

wp.ppak
where e = base of natural logarithm

and g is computed from equation (2.7.19)
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Figure 2.3 Characteristics of Proposed Failure and Yield
Surfaces Shown in Principal Stress Space. (a)
Traces of Failure and Yield Surfaces in Triaxial
Plane, (b) Traces of Failure and Yield Surfaces
in Octahedral Flane

{After Lade, 1980)
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Lade assumes the relationship between the maximum
plastic expansive work and the confining pressure can be

patterned by this power function:

, 1
Wy peak = P-Pal93/P,) (2.7.22)
where P and 1 are determined from a plot of (W_. /B_)
p peak’ a
VS, {U3IPa}. P is the intercept at U3fPa =1 and 1 is the

slope of the straight line.
From the normality rule, the incremental plastic

strains are determined from:

dagj - dlp 895 (2.7.23)
aﬂlj

The derivative of gP with respect to the principal
stresses which are to be used in equation (2.7.23) are

presented below:

— p— m —_
BEPIBUII = 31,7 (27 + n,. (P_/14) ). (05,5.044 0,3%) +
m
IBFII.m.nz.[Pa!Il] (2.7.24)
and similarly for the shear stress component.
! = m —_—
89,/ 00gy = 42T ¥ Nge (Be/ D))" el pabgs = €325939)  (2:7.25)

The expression for the cther derivatives can be obtained by
simply interchanging the indices. With the values of the
derivatives known, the final step for computing the
incremental plastic strain tensor from equation (2.7.23)
involves the determination of the proportionality constant,
AX ; the expression for computing Al is stated as

P
aw
Adp = p (2.7.26)

m
3.gp + m.ﬁz.[Pafll} -1g
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where gp is the plastic potential function and dwp is
the increment in plastic expansive work due to a change in

stress df

de = de . 1 (2.7.27)
f l1/q.W. - b
p {1/q D )
where fp = current value of the stress level.

2.8 Particulate Mechanics Appreoach For Mcdeling The
Behavior of Sand

2.8.1 Introduction

The theory used to predict the behavior of a material
may be based on one of several field theories which include:
guantum mechanics, wave mechanics, particulate mechanics,
rigid body mechanics and continuum mechanics. The
distinguishing feature of each of these approaches is the
level of ohservation; i.e. the theories listed (from guantum
to continuum) increase in the phenomenclogical scale of
material behavior (microscopic vs. gross) necessary for
theory formulation. Plasticity theory in scil mechanics is
founded on the principles of continuum mechanics of which a
fundamental assumption is that the material has no holes or
voids. Such a premise makes available the powerful methods
of calculus for the interpretation and guantitative
predictions of material response over a wide range of
conditions. Chang (1983), however, disputes the acceptance
of the continuum mechanics approach by stating that
"modeling the complex mechanical behavior of granular soil

by continuum mechanics usually requires excessively
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complicated yielding and potential functions which engineers
have difficulties using and implementing in numerical
analysis". Without endorsing this statement, the writer
finds it appropriate to present a particulate mechanics
model (Chang, 1983) that has been successfully applied to
monotonic loading conditions.

This model is based on the law of equilibrium between
particles and the concept that the direction of sliding
changes as the the stress state varies. The sliding
mechanism is used as a basis to develop the constitutive law
by incorporating: a. the effect of material structure on
sliding deformation, b. volume change induced by sliding,
and ¢. stress-induced anisctropy. Particles are idealized
as being rigid, convex, simply connected, unbreakable, and
of finite curvature.

Whern an assembly of particles is subjected to surface
tractions, its strains may be due to any combination of
these three components: 1) Sliding and rotation between
particles, 2) elastic compression of particles, and
3) crushing of particles. Studies have shown that the
elastic and rotational strains are negligible in comparison
to the sliding deformations while the strain component due
to particle crushing are also insignificant at ordinary
stress levels., Therefore, it may be assumed that the total
deformation within the granular assemblage can be solely

attributed to the sliding mechanism,.
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2.8.2 Theoretical development*

Consider a unit cube of sand particles in which the
contact points may slide or remain stable when subjected to
a boundary locad. Obwvicusly, the sliding contacts are the
only ones which contribute to the deformation of the mass so
the strain along a length of the unit cube may be

represented by

By = Ex uj (2.8.1.a)
j=1
where uj = vertical component ([ x - direction) of
the sliding deformation at contact point j.
n, = number of sliding contacts along this

vertical column.

Strains in the other two coordinate directions may then

be similarly expressed as

n
\ll
e = ¥ . (2.8.1.b)
¥ 5. 3
and
n
e = 5% w. (2.8.1.c)
Z =1 j

Given this representaticn of strains in the principal
directions, the next sequence of the discussion will be to
formulate the computational procedure for stress-history

dependent incremental strains due to increments of external

stress.

* PBased on principal stresses.
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Coulomb's law of friction governs the sliding mechanism
of a two-particle configuration as shown in figure 2.4 A. At
the contact point i, there are two equal but opposite inter-
particle forces, Fi' This force {Fii can be decomposed into
its normal component, Hi, and shear component, Ti'

According to Coulomb's law, Ti = Ni tana, or o =
tan_l{TifNi}. If the value of the angle is less than its
limiting value, ¢, relative sliding of the particles is
not initiated; on the other hand, a stress change may
increase the value of to the ultimate angle of internal
friction, #,, with the result that the contact point i will
now be classified as a sliding contact. The direction of
the particle sliding will be in a direction opposite to that
of the contact shear force and can be computed as a unit
sliding vector in the following form:

. Fr e 4T, .8.2
Ei fi51n by cos utl (2.8.2)

where fi and ti are the unit vectors of the contact
interparticle force and contact shear force respectively.

A statistical approach is emploved to analyse a column
of the assembly of particles. The cone depicted in the
upper portion of figure 2.4B represents contact points whose
contact forces are all pointing in the same direction. Note
that for the threshold contact points, the normal force, N.,
is the side of the cone which lies at an angle ¢u from F.
Say these particles (depicted by the cone) are now subjected
to an external load, it is expected that some of the contact

forces will remain stable while the others will slide due to
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Interparticle Forces Between Two Particles at

Contact Point, i <
[
it L dF =T lii} et dF
(&)
{b} Top View of the Cone
Sliing Mechanism
X Oy (B)

z
=k}
x
| ¥
Distribution of Contael Normals, E a8 Free Body of the Unit Cubse
(C) (D)

Figure 2.4 Mechanics of Particulate Approach
(After Chang, 1983)
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an increase in angle between F and N. Owing to the random
nature of the particle packing, some of the contact forces
will undoubtedly re-corient themselves as shown by dF in the
upper part of figure 2.4 B. 1In order to facilitate
computation of the sliding vector for the particles
represented by this cone, the summation of dF for the
particle set is treated as two components: the first (as
shown in fiqure 2.4B b(i)) is such that IdF = 0, and thus
the unit sliding vector, E&, (or collapse deformation) is
pointed in the direction F. The second part (see figure
2.4B b(ii)) considers the net dF which acts opposite to F;
this conjugate of the collapse deformation sliding vector is
termed the shear deformation vector, EE. The total sliding
vector is then simply the sum of the compression (or
collapse) and expansion (or shear) deformation:

+
s EC

= {fisin¢u - cos¢u.dfii + Cll?i] (2.8.3)

5]

S =

where C, is a weighting parameter which
indicates the percentage of collapsing
deformation and shear deformation.

Given the direction of sliding, the strains along a
particle column can now be computed if the number of
particle contacts and the mean sliding distance are known.
The following eguation mathematically represents the
straining of a unit cube of granular material.

£y = NKL[[T% sin¢u - cosﬁu.dfx] -+ Cl E%}] (2.8.4)
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where Nx = number of sliding contacts/column in x -
direction
fx = component of mean unit force vector, £, in

¥x-direction

df = increment of f#

B %
I

mean magnitude of sliding deformation
between 2 contact particles.

Similarly, £ and EY may be obtained from equation 2.8.4 by
using the appropriate indices., Note that strains are
related to mean interparticle force in equation 2.8.4 so it
is still necessary to link force, f, to stress in order to
establish the constitutive relationship between stress and
strain.

One of the more potent aspects of this model is its
ability to incorporate the influence of stress-induced
anisotropy. The density function, E( 2, 8), is represented
by an ellipsoid as shown in figure 2.4C. The equation for
this surface takes the following form:

E(a, B) = abc {2.8.5)
[a sin®B{c cosfa + b sinZa) + bc cos2i]

where o and 3 are used to describe a contact normal, and
a,b,c, are the maximum, intermediate, and minimum
principal radii which are at any time proportional to
the principal stresses:

a - b = C (2.8.6)

Based on this density function, an anisotropy index can

be derived as follows:
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_ # of particles along the o, direction

13

# of particles along the 04 direction

_ (1-B) _. (1 - 2B)
= Ry, [lﬂg R13!R13 1] (2.8.7)

_ % of particles along the ¢, direction
Byy = 2

# of particles along the direction

Cq

= R - 1/log R

Sk (2.8.8)

23]

# of particles along the direction

- i (2.8.9)

)
U3 direction 323

where R13 = UIFUE; R23 = UEIUB: and

Ay g

# of particles along the

B= (0,- 0,)/(9, - 0,)

As mentioned previously, the relationship in eguation
2.8.4 expresses strains in terms of inter-particle contact
force so it is now necessary to present the method by which
external stresses are converted into contact forces. Figure
2.4D is a free body diagram of a unit cube of sand

particles. From static equilibrium, the mean vertical

component of the interpaticle force can be approximated as

Fx = Glfﬁy.Nz (2.8.10)
where N x N_ = # of contacts points subject to Dl'
Similarly,
= a = O b -
Fy 2,’NK.Nz and B 3fo'Nz (2:8.11)

where Ni = total 4 of particles along column i.
The direction cosines of the mean interparticle force

vector, F, are
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E% = x = 94 5
F | [0, + (Ay,0,)% + (A 504) 7]
£, = Fy = A% "
F]
F [ 1> * {Alzozli + th1303]2]
_2 o Fp  om A1393 i
ib [nl2 - 1R120211 + [ﬁljﬂalal

Differentiation of equation 2.8.12 gives the change in

direction cosine of the mean interparticle force vector, £,

due to increments of external stress;

F = 2 1 2
dart X[ (A lEU 5 + A a

2 -
13 ldnl Y

2

3 1% e
g g

A?)15% 7, doy)

(o7
Hh
]

X[[ﬁzl + B I_)A A._A

a i 2
13973} 81209, 122%13%2%;3

dog

o.dg

g

y 37
Elzulczduli

& = 2 - -

af, = X[(0?; + A?,,0%,)A,,do, Ay30,95d0,
2 {
Ay 3A%150,09590,) ]
where X = (02, + A2 o. + A2._g2 ].‘3"‘2 (2.8.13)
1 1292 139°3 =S

Combining egquations 2.8.4, 2.8.12, and
now possible to establish the stress-strain

With the further assumption that the number

2.8.13, 1t is
relationship.

of sliding

particles is directly proportional to the total number of

particles in each column (ratio = C), the expressions for

incremental strains are as follows:
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dEx = {CNXL]u = H u
de = (CN_.L)v = A HV
( v ) Xy
= L_-= W 2-0
dez [Cﬂlew AL H w {2.8.14)
where Axy = Nyfﬁz; ﬁxz = Nx!Hz
H = hardening parameter defining the magnitude of
strains due to external stresses.
4, v, W can be determined from eqg 2.8.4, to be:
u = {tx51n¢u = cos¢udfx] + lex
v = (L i - 4 df T A
v = lfy51n¢u cesﬁudfyj + Cl n (2.8.15)
w = (f_einé -~ cosd df ) + C.f
z u > 1=

The hardening parameter, H, is characterized by the
following fundamentals: a) de 1 increases as the stress
ratio increases and becomes infinite at failure, b) dEl
decreases as confining pressure increases, and c) the
influence of the intermediate principal stress is also

incorporated. The failure criteria is the same as that

presented for the Lade elasto-plastic model (Lade, 1980),

i.e.
moe (Tilard 27) (L, /P )" (2.8.16)
Z 1 £/73E 1f'"a e
where I1f = 1St invariant of stress at failure
I3f = 3rd invariant of stress at failure
= atmospheric pressure

material constants

=

-
3
Il
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The guantity n is represented by the same equation for M
(eq., 2.B.16) except for one difference: the invariants of
stress are for any stress state below the limiting value,
i.e,

n= (1,%/1, - 21 (1, /P )" (2.8.17)

Another quantity, the stress ratio A, is defined to be

an indicator of proximity to failure,

A =M-n {(2.8.18)

The hardening parameter, H, is represented by the
following equation,

H = ) ds (2.8.19)

g c 3a
3.b, 3 m= 1

al—)" (z=) (— Y (1 + B}
Um Pa 3

where a, b, and ¢ = material constants

o 02 - 0
Gl -
and

&
= g.2 + dg.2 + 2
ds (d 1 d 2 dﬂ3 )

Also, it is assumed that the fraction of sliding
contacts subject to collapsing deformaticn is equal to 0%
for stress paths that have an increase in ﬂl and a

decreasing or constant 03. It is found that stress paths

which have both an increase in o4 and ﬁj do not result in

negligible collapse deformations, therefore the following

formula for Cl is assumed:



C1 = 3 (2.8.20)

In summary, six parameters are regquired toc calibrate
this constitutive model - M, m, a, b, and ¢ - which can be
obtained from conventional triaxial testing. General
monotonic loading conditions can be simulated to include
these phenomena: shear sliding induced compressive or
expansive volume change, and also volume change due to

collapsing sliding deformation.



CHAPTER 3
BOUNDING SURFACE PLASTICITY FORMULATION FOR SAND

Tl Intreduction

Most constitutive laws in soil mechanics have been
formulated for very specific loading conditions, but, in
many instances, the analysis of earth structures involves
complex and varying loading conditions. Although it is
dubious that a genuinely general constitutive model will
ever be developed, it is important that the model be able to
simulate undrained and drained response as well as the
effect of interchangeable loadings on a normally or
over-consolidated soil. Classical plasticity theory does
provide the anatomy for modeling these very important
aspects of soil behavior except for one major deficiency:
plastic irreversible deformation cannct occur within the
yield surface, which defines a purely elastic range of the
material response, contrary to observed behavior. This
short-coming led to the concept of the bounding surface
which was originally introduced by Dafalias and Popov (1976)
and independently by Krieqg (1975) to model both the
monotonic and cyclic loading of metals within the same
theoretical framework. The kernel of this idea is that for
any stress state within (or residing on) the bounding
surface, a corresponding "image" point on the surface is

39
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specified by an appropriate mapping rule which becomes the
identity mapping if the stress state is on the surface
(Dafalias, Hermann & DeNatale, 1980). This salient and
novel feature permits plastic deformations within the
surface by rendering the plastic modulus an increasing
function of the Euclidean distance between the actual stress
point and the "image" stress point on the bounding surface.
The "image" stress point on the bounding surface serves the
dual role of determining the magnitude and the direction of
the plastic strain rate; the plastic modulus, as mentioned
above, controls the magnitude while the direction of loading
and that of the plastic strain rate are defined by the unit
normal to the bounding surface at points properly defined by
the given stress state and the stress rate direction.

To the author's knowledge, Aboim and Roth (1982) were
the first investigators to apply the bounding surface theory
to cohesionless soils. When this model was later
implemented (Taesiri, McVay, & Townsend, 1983) to imitate
the cyclic stress-strain behavior along the moving wheel
stress path, certain deficiencies in the hardening rule were
noted and therein modified. In this thesis, further
refinements are made to the model and each will be
summarized at the end of the presentation of the theory.
Several features of the model which were not used in the
simulation of the pressuremeter tests or any other tests in
this report are not included. For instance, only

associative flow is considered so the plastic potential and
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the bounding surface become coincident; this significantly
reduces the number of equations that need to be presented.
More detailed discussion on the general aspects of the model
can be found in the Taesiri et al. (1983) reference.
3.2 Theory

The mathematical development of this model necessitates
the introduction of and definition of some of the more
frequently used symbols. 0@ is used for the effective stress
tensor and 3 for the deviator stress tensor. The

invariants of stress are defined as follows:

I tr(g) =038 = = 0O (3.1)

% 4% 3 Kk
J = %5:8 = %S;,8:4 (3.2)
where the indexed symbols refer to the components of
the tensors. The double contraction, represented by the
double dots (:), is defined by using the summation
convention over repeated indices (Malvern, 1969). & is the
Kronecker delta. The strain rate tensor is decompeosed into
its elastic and plastic parts through a mathematical
relation such as:

= €% + ¢P (2.3)

tMae

The elastic incremental constitutive relations are

given by (Little, 1973):

{-I-—.D EE
with
& { 5. 4
Dyigyy = (K %G] 1391 ¥ 60845851 * 851%5! (3.4)
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where K and G are the elastic bulk & shear modulus,
respectively:

The plastic constitutive relation requires the
definitions of the direction of plastic loading n:J and of
the plastic modulus, Kp, which in turn determine the loading

function L as:

- G

y g T (3.5)
K
P

where n is a second order tensor such that n : n =1

and KP is the generalized plastic modulus. The constitutive
equation for the plastic strain rates is assumed to have the
following form:

épij = <L>nij (3.6)

where < > are the Macauley brackets which define the
operation L =<L>H (L), with H being Heaviside's step
function, which is zero for L <0 and unity for L >0.

The final pre-requisite to the description of the
bounding surface is the explanation of the role of critical
state soil mechanics in this formulation. During a
conventional triaxial compression test on a dense sand, the
specimen will be cobserved to compress initially and then
dilate until "failure". It is hypothesized that the start
of the dilation phase of the volumetric behavior can be
predicted if the state of stress in the soil is known. In
stress invariant space, a straight line, passing through the
origin, can be visualized as differentiating stress states

above and below which dilation can occur (figure 3.1). It
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is postulated that the slope of this straight line, aptly
known as the ecritical state line, is both unigque and
constant for a sand at a given relative density. Our
attention is therefore brought to the introduction of the
first model parameter, N, which is the slope of the critical
state line (henceforth abbreviated to "CSL").

In principal stress space, the shape of the bounding
surface is assumed to be logarithmic between the origin and the
CSL, and then undergoes a continuous transition into an ellipse
which forms somewhat of a bullet-shaped cap axially symmetric
about the hvdrostatic axis. Defining® = /J /I, the proposed

bounding surfaces can be expressed as follows:

FeTl e g 1)3T e 21T, + 2 = gIT. 3= 0
N &) Q {3..°7)
for 0 <8< N
and -
F=vT+ N=-1) e S I, Inl - (e = 1)0T,= 0
e-1 0 el (3.8.a)

a

for N < 6 < o

By letting ¥ = ep/ Q(e - 1) 1in eq 3.8a, the equation
becomes more tractable in later derivations,

F=VJ+ N(e - 1)(xA - I)In(l - I/xA) = 0 (3.8.b)

where Q is a "trial and error" model parameter which
partly governs the ratio of the major to minor axes of the
elliptic surface (i.e. (Q - 1)/M), e is the base of the
natural logarithm. I0 is the vertex of the ellipse (i.e.
intersection of the ellipse with the hydrostatic axis) and

the bars over the stress invariants indicate that they apply
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to the bounding surface. The quantity Io {in units of
stress) is employed in monitoring the hardening parameter
defined as:

A = Iofp (3.9)

where p = atmospheric pressure in units of ID
Note that only a single constant, A, is sufficient in
recording the position of the surface in stress space since
the shape of the surface does not change. Later it will be
shown that A is a function of "plastic internal variables" -
such as the history of the plastic strain rate tensor -
which are a manifestation of the plastic state of the
material at any instant.

The mapping rule used in this thesis is the regular
mapping rule of Dafalias which relates ﬂij to a uniqgue
"image" point, Eij on F=0 by a straight line passing threough
the origin of stress space and Gij‘ This can be

mathematically expressed in terms of the stress invariants

as:
I= BI (3.10)
J = B2g (3.11)
where B = radial factor (greater than or equal 1)

g = 1 attests that the actual stress point and its
"image" are concomitant
Once the "image" stress point on the bounding surface
has been located, it is possible to compute the unit second

order normal to the bounding surface, n, by:
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n= VF (3.12)

where VF = gradient of F and
|[VE||= norm of F
Three different loading conditions are possible: wvirgin
loading, reloading or unloading. Each leoading situation
generates varying amounts of plastic strain so it is imperative
to specify an appropriate guantity for the plastic modulus, KP'
based on its relative peosition to the bounding surface {B ) and

the phase of the loading cycle, The proposed conditions are as

follows:

a) Virgin Loading - o:n> 0 with@= 1,
K_=X_ where n =n (3.13)
P P ~ -

b) Unloading - g:n<0 with B >1,
KP = EHuf[G - 1) where n=-n {3.14)
and é pointing inward from F

c) Reloading - 0:n <0 with 8 >1,
Kp = Kp + (B - 1]Hrf5, where n = . and
& pointing outward from F (3.15)

where H and H. are model parameters estimated from
curve fitting and K_ is obtained from the consistency

condition (discussed later).

In order to compute the normals to the bounding surface,
the partial derivatives of equations 3.1, 3.2, 3.7, and 2.8b are

required; the solution of nij on both surfaces is written out in

long form below:



47

For 0 <6< N i.e. Elliptic surface

aF = 2(I - IQHQ]

al
BF = (Q - 1)32
d N
3T = and aJ =8
= 1] O +J
ij 43
(VF),.. = 3F = 3F . 3T + 3JF . _ ad
2 36,. oI 0, 33 Fa,.
i3] ij ij
1] e + — |- - 2-'_
IPEl[= 2(x - I /@834 + (Q = 1/N)35,,
vE = A2(1 - I_/Q)1? + 2(Q - /M5 (3.16)
from equation 3.9, n = VE
|| VE]
therefore
= R - aT
a5 = 2(T Iﬂfﬂ]mij + (Q - 1/N) Sij (3.17)

J{EIT

For N £ 8 ¢ * iji.e. logarithmiec surface

1 /02 + 20l - 10T

@
I
I

=

0
I

1)[1 + 1n(1 - I/xA)

{(VF).. = F = = Nfe - 1)[1 + 1ln(l - ffo}]aij +2 é Eij
||VE]|= #/3N2{e - 1)2[1 + In(l - I/xA)]* + % (3.18)
N{e - 1)[1 + 1n(l - T/xa)] .. + 1/2Y3 (8..)

= i i 17 3.158
nij ij i3 ( )

AN2(e - 1)2(1 + In(l - I/xA)]2 + &
The location of the bounding surface in stress space is
a function of the state of stress and the plastic state
variables lqn]. i.e.
F = f{Uij, q.) where f(x,y) signifies (3.20)

a function of x & y
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In this plasticity model, there are two plastic state
variables: (a) the plastic equivalent shear strain, n, and
(b) the plastic volumetric strain, £. These components of
the plastic strain rate tensor are defined as:

- I f;j sP.2P  a4na £ = EkT{P (3.21)

where ef is the plastic deviatoric strain rate tensor

with components

sP _ P _ 173:P
&Py = €Piy - 138 (3.22)

% and £ can be written in terms of n by using equation

n o= Yy gP.éP = 1> /An, o (3.23)

Therefore, N anéd ! can be restated as

o - ufﬁiank' (3.24)

Il

n
‘5 = <T, > nl{]{ {3.25]
By invoking the consistency condition (Prager, 1948),
the general equation for the plastic modulus, KP, may be

computed as follows:

Consistency condition,

P o= _@Fgyat BEs + gEp =0
Edij an aE (3.26)
Rearranging egn 3.12, aF = VF = ||VE||n
3G

ij
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Thereifcre
8F=. . = |[VF| n:o (3.27)
Io, . 1] - T
1]

The plastic constitutive relation, equation 3.5, is now

incorporated in equation 3.27:

(]

Rl i LR

Ol:]

wrf'

d

o

but L = p:g0 from equation 3.5,

K
P

Therefore _ 3F5; . = ﬁ; ||9F || <L> (3.28)

Substituting equations 3.24, 3.25 and 3.28 in the

consistency condition (egn 3.26) results in

1

Eb ||VF || <L> + 3F <L>v% =TI76)n7 + 3E<L> n

5 k kk

o2
47

from which Kb can be solved as

K, == ggf/ﬁ - {1/6}n3,, + 3F n (3.29)
- VEN [n S

The next task at hand is the explanation of how the

[

guantities 3F/8n and 3F/3f are computed and the methocdology
by which the position of the surface is updated by using the
hardening parameter, A. Consider now that the hardening

paratemeter A represents the combined effect ofn and £ on the

bounding surface F; this can be expressed mathematically as:

A= £(n,E)

but F = f{uij, n.E) which is only on explicit statement of

eguation 3.20
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therefore F = f{ﬂi b}

jf
So this means that the consistency condition (egn. 3.26) can

now be restated as:

F= aF .G,.+ (3F . 3A). + (3F . 3A): = 0.  (3.30)
35, ] 32 @an ' 3A 3E °

Remembering that Io = Ap, the derivatives 3F/3A and
aF/ 3¥A, which are to be used in egn. 3.30, follows from

equations 3.7 and 3.8b respectively:

9F = =2 I+ 2(2 - Q)p?A for 0 <8< N {3.31)
3A oP Q

and
3F = (e - 1)[In(l - T) +I ] for N< B ¢ = (3.32)
XA XA XA -

The partial derivatives, 3A/3n and 3A/3£, are
calibrated along stress paths which dictate that only cne of
the partials - 3F/dnor 3F/3f - is a non-zerc term along that
particular stress path. The stress paths chosen are the
standard triaxial stress path and the isotropic
consolidation stress path.

Let us consider first the hardening aleng the standard
triaxial stress path; this path can be represented in general
stress space as follows:

I =/3J + 3 O (3.33)

where O is the effective confining pressure before the
specimen is sheared or generally, the minor principal stress

It is postulated that a hyperbolic relationship exists
between the deviator stress, /J, and the plastic egquivalent

shear strain, n:
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g=£f(Mm =_n = 3 (3.34)
R+ SN %m

where R and S5 are model parameters depicting the
hyperbolic function g.

Associating equations 3.33 and 3.34 leads to the
following expression for the triaxial stress path:

I = (»f’3‘+-3;g}gam (3.35)

Although the discussion of the derivation of 5A in this
paper may seem somewhat superfluous, it is considei;d
appropriate since it is the procedure adopted in numerical
analysis. The computational technique is depicted compactly
by this eguation:

@ = |or/onlex (3.36)

an oF / BA |tx

where the subscript tx refers to the triaxial stress

path.

|aF/3a |, is simply reckoned by substituting equation
3.35 into equations 3.31 or 3.32 depending on the surface
that is relevant. Along a conventional triaxial compression
(CTC) stress path, B3F = 0, so the consistency condition
(equation 3.26) condenses to

EFﬁij + 3F: =10 (3.37)
X arn
1]

From equation 3.16, 8F/do.. can be replaced in eg 3.37

j
to result in the new expression:

[2(T - Iofﬂlﬁij + (0 - lfN}ZSij]Gij + %%ﬁ =0
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which further simplifies to

2(I - I_/O)T + ((0 = 1)/N) 2 2/T /T +3F : =0 (3.38)
an
for 0 <fs N

Recalling equation 3.35 and taking the derivatives I

and vJ, as shown below, for eventual insertion in equation

3.38,
I = /3go + 30 {3.39)
= K
I = JTGm g'n
and
AT = g'Gmﬁ where g' = #4g/5n (3.40)

results in this final form of the equation,

of’

2 = -29 g' {rmnm{.f’?g + 3) - Ap/Q] + go_((Q - 1)/N)2]}

tx

for 0 £ 8 £ N (3.41)

The corresponding equation for HF! on the log

mnltx

surface 1is

‘_E" =cmg'{me-11[1+1n{1-*’Tq”m'*:”m”#37-1} ,,
3N ey XA (3.42)
After this lengthv derivation, it is instructive to
remind the reader that equation 3.41 and 3.42 are only to be

used in conjunction with equations 3.31 or 3.32 in the
definition of %ﬁ as exhibited in equation 3.36.

Having comp?eted the outline of the derivation of %ﬂ,
it remains now to describe its conjugate: %%. This ;
component of the hardening is calibrated aloﬁg the isotropic

consolidation path from which it is easily shown that
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deviatoric component of the plastic strain rate is zero,
i.e. ﬁ = 0. The consistency condition (egn. 3.26) reduces

in this instance to:

3F 5.. + 3F: =o0 (3.43)
N e aE -
ij

Another empirical relationship (Baladi and Sandler,
1980) similar to the hyperbolic function used to model shear
stress vs. shear strain, is proposed to depict the bulk
stress vs plastic volumetric strain:

Opx = - 1/D 1In(l - £/W) (3.44)

where D and W are model parameters

This exponential function (eqg 3.44) can be conveniently

manipulated to yield the expression for %%:

a - 1/D 1n(l - E/W)

Kk
Bp = - 1/D 1n(l - &£/W)
A = - 1/Dpln(l -£/W)
|38/ 3€|isotrop = 1/Dp(W=E) (3.45)

where the subscript isotrop indicates the

isotropic consolidation stress path

Note that the parameters D and W have some physical
significance in that W represents the maximum plastic
volumetric strain on a plot of Iex VS- Ekkp while D
signifies the rate at which the plastic volumetric strain
approaches its limit.

On the log surface, the derivative may be similarly

derived to be:

dxA = a 1 (3.46)
33 e = 1}Q DIw - &)
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It was found that the hardening along the CTC stress
path was adequately simulated by the hardening law
originally proposed by Aboim and Roth (1982). Therefore for
a general stress path, it is judicious to decouple the
influence of 3A on the hardening. Taesiri et al., (1983)

tendered that the value of %% = 0 along the CTC stress path

so the following hardening in general stress space was

proposed:
3A = |3A Q1 - ¥3J . (3.47)
3f 3f |isotrop I—BGm

where ¢ > 1is the Heaviside step function similarly,

1 - Y33 (3.48)

s}
dah
wh o

B;{A = P
aE isotrop I-3c

E

m

We are now furnished with all the equations to compute

the general plastic modulus, KP, from egquation 3.29. The
final requirement in the discussion of the theory is the
presentation of the elasto plastic incremental constitutive
equation. Combining equations 3.3 and 3.4 produces the

following:

-

_ ¢P

%5 = Pigx1Fra (3.49)

k1

and introducing equation 3.5 into equaticon 3.49 results
in
G.. =D €., = "pa
i3 T PijklTkl T BB,
P
Taking the inner product of equation 3.50 with N5 and

Dijkl Ny (3.50)

solving for
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Bis 954 = P4 Pigi Sxa (3.51)
E K +n D n
p p ~ "pg “pgrs rs

Entering equation 3.51 intc eguation 3.50 gives

the rate independent elasto plastic constitutive relation

for controlled strain:

- = - = n D E.:
O = Dijklikl " Kab+a2cducd - > Dijklnkl (3.52a)
P PG pP4grs rs
or in matrix notation
{01} = [C L] { €} (3.52b)
6 x 1 6B x 6 B x 1

In long ferm, the elements of the non-symmetric [CL]
matrix are:

Preliminary definitions,

Yo = 1
Kp T Map Dabcd "ea
2(1 + v
Y = K- 2/3G= E
(1 + v) (1 — 2v)
where E = modulus of Elasticity
v = Poisson's Ratio.
CL11 = A+ (2u + [wlzunll + lnkk]‘]
Cle = A+ [[2ul,';n22 + lwnkk]{lnkk + 2 unll}]
CLl3 = A+ [(2u ¢n33 4 l?nkk} { lnkk + 2 unll}]
CLI4 = 4 u wnlz ( lnkk + 2 u nlll
CLIE = 4 u ¢n13 ( lnkk + 2 u ”11]
CLIE = 4 u ¢n23 { lnkk + 2 u nll}



CLZI

CL22

CL23

CLyy4

CLES

CLEE

CLBJ

“hiyo

CL33

CL34

CL35

CLBE

CL41

CL42

CL43

Clyyg

CL45

CLAG

CLEl

Clgo

CL53

CL54

CL55

CL56

L+ 2 u 4+ [(2 u
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A+ [(2u ¢n11 + A¥n
A4+ 2u+ [(2u ¢n22 +

A+ [(2 u

4 uyn, ( Ang, + 2 un,,)

u wnla ( lnkk + 2 un

u ¢n23 { lnkk + 2 un

+ [(2 uyYn +Aln

11 kk

+ [(2 1 + A

L o

b & Tl

( lnkk

u wn23 { lnkk + 2 un

12 (2 u wnll +  An

{2 u wn22 +  Ayn

(2 a Pn +

u + 8 fJu n17

8 ¢ u® M2 M3

8 v u” n

n

12 23

i + Ay
u n . (2 u UYn n

11

uony, (2 u Yn

U ngg ( 2 u Un

2
p u” n

+ AUn

13 713
u + 8 wuz n

‘211 n
P Rys fan

2
13

Y [ An

Yngk!
Aln

+ 2 un

13 { Enkk + 2 un

33 Abnyy)

33 1 Ang,)

33 ‘kk

nkk + 2 un

M) O APy

Kk + 2 u n33}
{ lnkk + 2 un
k) O Anpy

+ 2 un

wnjj + lwnkk} ( Enkk + 2 u n22]]

]

+ 2 u n33}]
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CLﬁl = 2 Nong (2 u Ny + lwnkk]
CLE2 = 2 1 g {2 u @ Ny * lwnkkl
CL63 =2 u n,q (2 u W Nsq e lunkk}
= ol
Chgg * 8 BN My Duyg
2
= il
CL&E 8 4 u n,, n13
CL = 2 u + 8 u2 n 2
66 23

3.3 Some Important Aspects of the Bounding Surface

Formulation

Whereas the original concept of the bounding surface in
plasticity analysis is attributed to Dafalias and Popov
(1976) and Krieg (1975), its application to modeling the
elastoplastic response of sand was first introduced by Aboim
and Roth (1982). Taesiri, McVay and Townsend (1983) further
modified Aboim and Roth's original model and it is this
altered model which serves as the superlative reference for
the theoretical presentation in this thesis. However,
further important modifications to the Taesiri model have
been presented herein and some aspects have been omitted
altogether; it is therefore instructive to summarize these
distinctions:

1. The parameters T and U which were used in the prior
version of this plasticity model have been excluded. These
model parameters relate the plastic equivalent shear strain
to the plastic volumetric strain by a transformed hyperbolic
relationship; their significance was inconsequential in

comparison to the parameters R and S which associate the
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deviatoric stress to the plastic shear strain. However, when T
and U were included in the formulation, the predictions of the
stress—-strain response were very sensitive tc the assigned
values of these parameters. The entire model has herein been
re-formulated based on the exclusion of both the parameters T
and U.

2. Accomcdations have been made by Taesiri et al. (1983)

for a non-associative flow rule for this plasticity model,

All of the predictions in this thesis are based on

associative flow so it was net necessary to include the
protracted equations which are used in the description of

the non-asscciative flow theory.

3. The mapping rule is the simple mapping rule of Dafalias and
does not consider any value other than zero for the "back"
isotropic stress. The simplification permits the elimination of
yet another parameter (%) from Taesiri's l4-parameter mocdel.

4, The second major modification to the reference model
embraces the hardening relationship along the hydrostatic axis.
Originally, a straight line was proposed linking plastic
volumetric strain to the bulk stress; however, this

empirical simulation proved to be inadequate along stress

paths which generated little or no shear strains such as the

Ko consolidation stress path. An exponential function,

similar to the one employed by Baladi and Sandler (1980),

has been selected to replace the less realistic straight

line relationship.
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1.4. Calibration of Model Parameters

There are two elastic constants and eight parameters used
in developing the incremental plastic constitutive law which
need to be estimated in order to characterize the elasto-plastic
stress—-strain response of a granular scoil. The elastic
constants are the bulk modulus, K, and the shear modulus, G,
which are computed by first calculating the elastic modulus and
using an assumed value of Poisson's ratio. The modulus of
elasticity is derived from the unload cycle of a cyclic
conventional triaxial compression test or equivalent.

The parameters R and S depict the proposed hyperbolic

5

relationship between deviatoric stress (J° in terms of the
stress invariants) and plastic equivalent shear strain (n
). For the conventional triaxial compression test, both

these components of the stress and strain tensor are simply

evaluated by the following egquations:

e P _ e P
n=Et : (3.4.1)
V3
F= 9= (3.4.2)
V3

Aboim and Roth (1982) state that the total principal
strain can be used instead of the plastic principal strains
in equaticon 3.4.1 since the elastic component is numerically
insignificant in comparison to its plastic conjugate. Since
data reduction procedures utilized in this research were

facilitated by a microprocessor, it was not considered
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laborious to remove the elastic strains before analysis.
Also, unless a radial strain measuring device such as an
LVDT (linear variable differential transformer) clamp is
used, the radial strain {EE = €3] of the specimen will have
toc be computed indirectly from the recorded volumetric

strain and the axial strain {El )}, i.e.

E3P > Ekkp = ElP (3.4.3)

2

The slope of a plot of 0 ng/ J%

vs. N% is equal to the
parameter S while the intercept on the Om ny/ J!'E axis is
equal to the value of R. These model parameters do bear
some physical significance to a triaxial stress-strain
curve; the inverse of S is indicative of the "strength" of
the sand since it mathematically depicts the horizontal
asymptote at the "failure" deviatoric stress.

Alternatively, R governs the initial slope of the deviator
stress vs axial strain curve.

The parameter N is also appraised from the triaxial
test, and it is the ratio /J/I at which volumetric behavior
evinces the start of dilation; this information can be
easily extracted by noting the deviatoric stress
correspeonding to the peak of the positive volume strain
(i.e. compression) vs axial strain plot. Knowing the
magnitude of this deviatoric stress and the confining

pressure, N can be obtained as follows:
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N= /T = el (3.4.4)
5 J?[dd + 30 ]
where S deviatoric stress at which dilation begins

and o confining pressure

The model parameters, D and W, used in characterizing
the hardening along the hydrostatic axis is routinely
obtained from an isotropic consolidation test. The test
data may be conveniently obtained from the consolidation
phase of the triaxial test before the specimen is subjected
to shear stresses. Parameters D and W are then estimated
from the plot of plastic volumetric strain vs bulk stress.
Here again the parameters do manifest some physical
significance; W is representative of the maximum plastic
volumetric strain for the stresses under consideration while
D suggests the rate at which this limiting value of plastic
volume strain is achieved.

No empirical basis has been established for determining
the following parameters: the unload modulus, Hu’ the
relcad modulus, Hr' and the constant which controls the
shape of the ellipstic bounding surface, Q. These
parameters are therefore evaluated from trial and error
methods,

The table below summarizes the procedures for obtaining

the model parameters:
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TABLE 3.3.1

SUMMARY OF HOW B.S. MODEL PARAMETERS ARE DERIVED

MODEL PARAMETER DERIVED FROM
R Hyperboliec stress-strain curve
S Hyperbolic stress-strain curve
D Isotropic consolidation test
W Isotropic consolidation test
K Bulk Modulus, triaxial or consolidation test
G Shear Modulus, triaxial test
Hr Trial and Error
Hu Trial and Error
Q Trial and Error

N Triaxial test




CHAPTER 4
SELF-BORING PRESSUREMETER TESTS

4,1 Introduction

The Cambridge Self Boring Pressuremeter is perhaps the
most advanced insitu geotechnical testing device in the
world today. Although much used in European countries, this
device can be found at only four locations in the United
States - the University of Florida, Stanford University,
California Department of Transportation, and the Federal
Highway Administration in Washington D.C. As its name
implies, this combination boring-pressuremeter instrument
inserts a pressuremeter probe into the ground by a
self-tunnelling technigue which minimizes the disturbance of
the insitu soil, and then performs a test at the desired
depth by expanding @ rubber membrane into the soll by gas
pressure. The importance of reducing soil disturbance is
crucial since the theoretically derived correlations,
between the soil parameters and the cavity
pressure-displacement curve, are based on the assumption
that the scil surrounding the probe is undisplaced. On the
other hand, where the insertion technique may differ, such
as in a Mennard pressuremeter test in a pre-drilled

borehole, it is necessary to determine the scil preperties

63



64

from empirical formulas because of the disturbance
introduced by stress relief.

The principle of self boring was first applied at the
San Brieuc Laboratory at the Ponts et Chaussees in 1967
where difficulties had arisen while trying to interpret the
results of certain Mennard pressuremeter tests (Baguelin,
Jezequel & Shields, 1978). Research and development
followed at Cambridge University which initially focused on
utilizing this self-boring technique to measure in-place
total stresses. After fabricating the machine that
permitted only minimal disturbance, the notion of
incorporating such a system with a pressuremeter became
palpable; Dr. Wroth, then at Cambridge University, along
with a succession of research students - Hughes, Windle,
Clarke, and Fahey - started investigating and developing the
self boring pressuremeter (henceforward abridged to "SEPM")
in 1970. The appartus is now manufactured for the
commercial market by the "Cambridge Insitu" company which
was licensed in 1974. Although mostly research
organizations were originally interested in the device, its
potential and applications were bheing realized, and in 1278,
the machine became commercially available. Even so, only an
elite group of research enginecers were experienced encugh to
realistically analyze test results and this led to the
formation of the consulting firm "P.M. Insitu Techniques

Ltd" in 1978 (Wroth, 18%83).
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4.2 Eguipment & Field Testing Procedure

4.2.1 Equipment

4.2.1.1 Introduction

The key to self boring is the ability to penetrate the
ground without displacing it. In order to achieve such an
effective drilling operation, some of the soil disturbance
factors that would need to be eliminated are as follows:
the cutting action of the drilling tools, borehole vielding,
water content changes due, for example, to the £luid which
is used to wash out the hole or to the drainage of ground
water intoc the hole, and finally, the disturbance due to the
introduction of the probe.

Four principal components comprise the self boring
pressuremeter: a) the probe which includes the
self-tunnelling mechanism, b) the control unit which is
located at the ground surface, ¢} the tubings which connect
the probe to the contrel unit, and 4d) the drill rigqg.

Three simultaneous actions are prcopagated by the
drilling apparatus -

1) the application of static force to overcome the
small resistance of a cutting edge and the
relatively large skin friction due to the surface
area of the probe.

2) rotation of the grinder

and

3) Injection of fluid for washing.
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4,2.1.2 The Probe

The probe itself consists of a cylindrical rubber
membrane (as depicted in figure 4.1 & figure 4.2) which has
three electrical strain gauges attached circumferentially
around its midplane. There are two pore stones at either
side of the cylindrical membrane fitted with transducers for
measuring the pore water pressure. A pressure transducer is
also mounted in the cavity to measure its internal applied
pressure. Each of these electronic instruments are
calibrated to measure the desired change in length or
stress. The membrane is protected while the instrument is
being inserted intc stiff or abrasive soil by a series of
narrow flexible stainless steel strips running
longitudinally down it and looking much like a Chinese
lantern. This protective shell adds very little to the
radial stiffness of the instrument and whatever errors it
introduces can be rationally eliminated since its stiffness
is a known constant. Fitting flush at the front of the
measurement module is a thin walled "sampler" with a
rotating blade at its mouth for grounding up the soil core
that enters it as the sampler probes through the ground. It
is noteworthy that the cutting edge of the "sampler" slopes
towards the interior which is contrary to the structure of
typical sampling tubes where alteration of the soil's stress
state on the periphery of the sampler is not of major
importance. A controlled flow of water is injected onto the

"ecuttings" at the mouth in order to provide a dynamic medium
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Figure 4.2 Photograph of SBPM Probe

Figure 4.3 Photograph of SBPM Control Unit
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for the transportation of displaced soil to the ground
surface.

As mentioned previocusly, three actions are required to
maintain the self-boring process and the mechanisms used in
effecting these operations are as follows: 1) static force
on the rods is supplied by a hydraulic system at the
surface, 2) the torgue for the rotation of the cutter is
transmitted by inner rods coupled along the axis of the
cylindrical shell, and 3) the wash water is flushed down the
center of these rotating rods while the suspensicn of
"cuttings" in water returns to the surface up a concentric
outer tube coupled along the axis of the cylindrical shell.
4.2.1.3 SEPM rig

The self-boring pressuremeter trailer (as shown in
figure 4.4) has a 10-hp gascoline engine which powers both a
water pump and a hydraulic pump. Interconnected baffled
water tanks on the rear of the rig are used to clarify the
recycled water. Gauges are provided to monitor the pressure
of the hydraulic fluid so the operator can control the
thrust on the cutting shoe as materials of varying stiffness
are encountered during boring.

4.2.1.4 The control unit

A single cable carries both the electrical wires and
the gas pressure from the control units (depicted in figure
4.3) at ground elevation to the measuring cell. At the
surface, this cable links into the control unit to measure

the gas pressure; in addition, the control unit performs a
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number of other functions which include: constant rate of
strain testing, automatic data retrieval on an electrostatic
printer, adjustment of print intervals during data
recording, self-test switches, etc.

4.2.2 Typical field testing procedure

Field testing consists of two basic operations: a) the
probe is first implanted in the ground at the desired depth
by the self-tunnelling technique, and b) this is then ensued
by a cavity expansion test under supposedly undisturbed
conditions. The adjective "undisturbed", although not
literally descriptive, is justified when one considers the
capabilities of other present-day insitu investigative
devices; researchers at Cambridge University have reported a
maximum lateral movement of the soil in the immediate
vicinity of the probe to be less than 0.5% of its diameter
(Hughes, 1973).

After the surficial soil has been manually grubbed from
the intended point of procbe penetration, twe pistons mounted
on a frame are used to thrust the probe intc the ground.

The rotating cutter, situated at the mouth of the hollow
probe, operates simulatneously while pulverizing and
removing the soil that lies in the probe's path. A stream
of recycled water, flowing down the rods to the cutter,
impinges horizontally on the "cuttings" to aid in the
transportation of the soil to the surface sedimentation
tanks. Fluid flow is optimized to maintain effective

removal of solids while avoiding the other extremity where
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the wash boring flow disturbs the insitu soil. The location
of the cutter with respect to the probe's entrance port must
also be adjusted such that the cutting operation is
efficient but yet deoes not cause undue soil disturbance
outside the probe.

At the desired depth, the rubber membrane, with its
accessory measuring devices, is inflated by introducing gas
(nitrogen) pressure. Whereas the insertion of the probe was
the responsibility of the hydraulic system on the drill rig,
the monitoring ané control of a constant rate of strain test
(and to a lesser extent the regulated pressure test) is
entrusted to some of the more sophisticated electronic
equipment (i.e. the control unit) currently used in insitu
soil studies. Eight variables are registered and output in
digitized form: gas pressure in the membrane, 3 radial
deformations of the membrane at mid-height, the total radial
deformation, pore water pressure readings at the two
transducers, and the sum of both pore water pressure
readings. Figure 4.5 illustrates the data processing system
used in the presentation of pressuremeter test results.
(Note that in this figure as well as the rest of this
chapter, strain is defined as the radial displacement
divided by the initial displacement i.e. circumferential
strain at the cavity wall).

Both the uniform strain rate and the manually stress
requlated tests are similarly performed, the main

differences being the method of data collection and as the
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terminology suggests, the internal pressure is manually
varied for stress-contrclled testing while the control unit
is used for spontaneous controlled strain testing.
Presently, equipment at the University of Florida does not
permit the automatic retrieval of test data during the
stress regulated test, but the strain control unit has a
modern data capture unit which outputs the data at
prescribed time intervals to an electrostatic printer.

In order to plot the modulus loop used in the
determination of the shear modulus, G, the expansiocn phase
of the test i1is reversed at a predetermined stress or strain
level, and cavity pressure vs radial displacement readings
are continually observed during this restrained contraction
and re-expansion of the cavity. The magnitude of the shear
medulus (i.e. unload-reload) loop is important because
different failure modes may be induced by the dominance of
the circumferential stress over the radial stress (Wood &
Wroth, 1977); to circumvent this problem, it is suggested
that the unlecading loop do not exceed twice the undrained
shear strength (c¢) of the insitu clay. A similar elastic
analysis may be performed for sands to ensure that the
circumferential stress never beccomes the major principal
stress. The membrane is then reloaded to a maximum
expansion of 10% strain, and at this stage, the
pressurencter probe may be deflated and, if necessary,
lowered to the next test depth. Wroth (1982), however,

points out the significance of the unlcading phase after
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maximum cavity expansion has been achieved: a flat plateau
will be noted on the descending portion of the total stress
vs strain plot for a saturated sand which gives a direct
reading of the pore water pressure. This phenomena can be
attributed to the drainage of pore water into the region of
collapsed soil surrounding the deflated membrane. As would
be expected, a similar trend is not observed in clayey soil
owing to the low permeability characteristics which do not
permit rapid drainage of pore water into the collapsed zone.

4.2.3 Advantages and disadvantages of the SBPM

The commercial manufacturer of the present-day self
boring pressuremeter device lists the following advantages
and handicaps of SBPM field testing;

ADVANTAGES

The tests are performed on virtually undisturbed scil,
although some slight disturbance is inevitable, it will
be very greatly less than the disturbance associated
with so-called "undisturbed" sampling or with
pressuremeter tests in pre-drilled boreholes.

A number of soil parameters may be obtained from a
single test:

Clays - undrained shear strength, shear modulus or
undrained Young's modulus, and insitu horizontal total
stress.

Sands - angle of internal friction & angle of dilation.

Parameters can be derived from the test results using
well developed theories of cavity expansion without
resorting to empirical correlation factors. The data is
less scattered than other types of testing; variables
associated with other types of testing include
disturbance due to sampling or trimming, time between
borehole preparation and testing, and the effects of
piping in a borehole in sand below the water table.

Quick turnaround time for data processing.
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DISADVANTAGES

Will not penetrate gravel, boulder clay, claystones,
etc.

The orientation of the failure plane and mode of
deformation will usually be inapproriate to the field
situation.

No control of total or effective stress path - only two
stress paths, drained or undrained. [Unlike a triaxial
test where the magnitudes of the principal stresses are
known, the complete stress and strain history during a
pressuremeter test is unknown and depends on the choice
of constitutive law].

To reduce the effects of drainage, undrained tests have
to be performed at undesirably high rates of strain.

Instrument is complex by modern standards.

4.3 Laboratory Study of the Pressuremeter Test in Sand

A series of self boring pressuremeter tests were
performed in the University of Florida geotechnical testing
chamber as the first phase of a study (Davidson et al.,
1983) to investigate the behavior of both loose and dense
sand during SPBM testing. In this research report, the
Hughes et al. (1977) method of interpretation of 5PBEM test
results was evaluated and compared to soil parameters
obtained from both ccnventional triaxial compression (CTC)
tests and dilatometer tests. It is this report (Davidson et
al., 1983) which provides the major portion of the triaxial
test data used in calibrating the Bcocunding Surface
plasticity model (by procedures previously outlined in
chapter 3), and the "controlled-environment" SPEM test

results which were used for comparison to predictions
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obtained by the finite element method (as will be discussed
in the following chapter).

4,3.1 Soil description

The Reid Bedford sand used in this test program was
selected because its behavior has been well documented
through research efforts at the University of Florida and at
the Corp of Engineers Waterways Experiment Station at
Vicksburg, Mississippi. The soil description that follows
is only a surmary of the more detailed presentations cf the
material properties that can be found in Lheur (1976) or
Davidscn et al. (19B83).

Color & type: light brown, clean, fine sand.

Grain shape: varying from subrounded to subangular.

Mineralogy: 89% quartz, 9% feldspar, 2%

ferromagnesians and "heavies".

Maximum dry unit weight: 107.1 pcf

Minimum dry unit weight: 88.7 pcf

Dﬁﬁ: 0.217 mm (see figure 4.6)
Dlu: 0.160 mm
Coefficient of unifecrmity, Cu: 1.36

Specific gravity, G_: 2.66
Unified Soil Classification: SP

Maximum void ratio, e = D.871
max

Minimum veoid ratic, e . : .550
min

4.3.2 The test chamber

This triaxial test chamber (as described by Laier,

Schmertmann & Schaub, 1975) was specially designed to
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calibrate and to study under controlled conditions the
performance of insitu testing equipment. The main feature
of the chamber is that the vertical and horizontal boundary
stresses can be independently applied to the sides and base
of the sample; it is also possible to restrain displacement
at either of these boundaries (i.e., no horizontal or
vertical strain). Figure 4.7 illustrates the stresses
acting on the boundary of the chamber in which the
pressuremeter probe has been cast in place into a sand
specimen (in this figqure, a = 1.606" & b = 23.907"), and
figure 4.8 is included as an example of a pressuremeter test
result in this chamber. Considering the possible
combinations of prescribed horizontal and vertical stresses
or strains, it can be shown that there exists four potential
boundary conditions (BC):
a. BC #1 - no change in vertical or horizontal stresses
b. BC 42 - no change in horizontal stress or vertical
strain
c. BC #3 - no change in vertical stress or horizontal
strain
d. BC #4 - no change in wvertical or horizontal strain
All of the pressuremeter tests were performed under BC
£1 or BC #3, and as will be noted in the following chapter,
this proved somewhat incovenient in the finite element
idealization since the constant stress boundary condition
could not be modelled with the present computer code. At

this stage, it should also be menticned that no attempt was
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made to numerically simulate the pressuremeter test in loose
sand since the bounding surface elasto-plastic constitutive
law was originally intended for stiff clays or dense sands,
and has not yet been validated or modified for predicting
the stress-strain response of loose material.

Further details of the testing procedure and the sample
preparation by the sand rain methcd can be found in the
Davidson et al. (1983) reference or in other reports
relating to a similar series of tests performed at the

University of Cambridge (ex. Jewell, Fahey & Wroth, 1980).
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CHAPTER 5
PRESSUREMETER ANALYSIS BY THE FINITE ELEMENT METHOD

5.1 Introduction

The typical stress-strain response obtained during a
pressuremeter test can be mechanically modeled by a
thick-walled cylinder subjected to an internal pressure,.
The currently available theoretical solutions to this
loading condition consider materials whose behavior may be
characterized as either elastic or elastic-plastic (Tresca
or Von Mises yield criteria). The elastic solution can be
found in manv texts including Timoshenkec and Goodier (1970),
Hill (1950), and Little (1973). Hodge and White (1950)
derived the solution for cavity expansion in an
elastic-perfectly plastic medium based on a Mises yield
criteria; however, their approach requires the numerical
solution of a complicated system of non-linear partial
differential equations. Koiter (1953) presented the
elastic-plastic closed-form derivation for a Tresca material
which was later extended to include work hardening Tresca
materials (Mendelson, 1978). These hypothetical sclutions
to the stress and strain distributions within the media are
governed by simplifying assumptions regarding the imposed
boundary conditions on the "thick-walled cylinder" and the
intrinsic nature of the material. The importance of

83
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boundary specification is well illustrated by Aboim (1981)
who, in his finite element analysis of pressuremeter
expansion, concludes that different outer boundary
constraints cause differences in material behavicr that are
more important than the ones produced by conditions of plane
stress or plane strain during loading.

Owing to the fact that the bounding surface (henceforth
abbreviated to B.S.) plasticity constitutive relationship is
strain history dependent, it is doubtful that there is a
realizable academic solution to the cylindrical cavity
expansion in a medium characterized by a B.S. rheological
formulation. It was therefore necessary to rely upon
numerical techniques to investigate this boundary-value
problem. The finite element process was chosen as the
"standard discrete system" research tool to approximate this
continuum problem; the foremost reason influencing this
selection was the availability of a computer program which
conceptually did not regquire too much modification effort to
accomodate the B.S. elasto-plastic constitutive law.

5.2 Theory

The general concepts of the finite element method
approximation technique can be cutlined by these steps
(Zienkiewicz, 1982):

a). The continuum is separated by imaginary lines or

surfaces into a number of finite elements.

b). The elements are assumed to be interconnected at a

discrete number of nodal points situated on their
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boundaries. The displacements of these nedal
points will be the basic unknown parameters of the
problem.

¢). A set of functions is chosen to define uniquely
the state of displacement within each finite
element in terms of its nodal displacements.

d) The displacement functions now define unigquely the
state of strain within an element in terms of the
nodal displacements. These strains, together with
any initial strains and the constitutive
properties of the material will define the state
of stress throughout the element and, hence, also
on its boundaries.

e). A svstem of forces concentrated at the nodes and
equilibrating the boundary stresses and any
distributed loads is determined resulting in a
stiffness matrix relating nodal forces to nodal
displacements.

f). Assembly and analysis of the system of elements is
accomplished by invoking the conditions of
displacement compatability and equilibrium for the
whole "structure". After insertion of the
prescribed boundary conditions, numerical methods

are emploved to solve the eguation system.

The application of the finite element method to the

structural analysis of axisymmetric solids was first
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presented by Wilson (1965). This procedure was incorporated
into a computer program for elastic analysis which was later
altered by Duncan (Duncan and Chang, 1970) to perform
non-linear incremental analysis for soils. It is this
computer program by Duncan which has been further modified
in this thesis to execute the B.S. elasto-plastic
incremental analysis. It is therefore most appropriate in
this context to discuss the finite element idealization as
it pertains to bodies of revolution subject to axisymmetric
loads such as the pressuremeter expansion.

5.2.1 Element characteristics

5.2.1.1 Displacement function

Consider the cross-section of a typical triangular ring
element as shown in figure 5.1 and 5.2, with nodes i,j.,k
numbered counter clockwise.

The displacements of a neodal circle, such as i, have
two components

. . u (5.1)
gl = ful] = ir

u
F

and the six components of element displacements are listed

on a vector

i i i
u u”oou,
& s I} ¥ i i
u- = us = u_" ou, (5.2)
u u® Y
= d LTE z |

The displacements in terms of these six components (eq.
5.2) in the r - z plane within an element are defined by two

linear polynomials
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Figure 5.1 Strains and Stresses Involved in the Analysis of
Axi-Symmetric Solids
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This linear displacement field assures ceontinuity
between elements because the displacements vary linearly
along any side of the triangle, and with identical
displacement imposed at the nodes, the same displacement
will clearly exist along an interface. The six constants bi
can be evaluated easily by solving two sets of three
simultaneous egquations which will arise if the nodal
co-ordinates are inserted and the displacements equated to

the approriate nodal displacements; for instance
:
u = bl + bzri + bzzi {5.4a)

or in general, the following matrix equation is

obtained
Wi gt [« oz | (6. b1 5.4m
r z i i 1 4 "
J 14 (.
ur uz 1 r:.| zj bz b5
k k
L u u, B _1 ry zk_ __b3 bﬁ_

From egn. 5.4b, it is now easy to solve for the

constants bi in terms of the displacement at the vertices.



i i
by b4 u, u, (5.5a)
- 3 ]
b2 b5 = [D] uI u,
k k
JbE bﬁ_ ! u, u, ]
where
rjzk - rkrj Iz, - r;z, I, z] - rj zg
[D] = i 2. _ 2y 2y — 24 z, - ;J
i Iy, - rj r, - ry rj g A
in which X = area of triangle i,j,k = rj{zk - zi]
+ ri{zj - zk} + rk[zi - zjl

eqn. 5.5a may be restated symbolically as
[b} = [h] [u] (5.5b)
By reckoning the values of the constants bi, we have
approximated an expression for the displacements {uE] within
a typical element e in terms of the nodal circle

displacements [u]

u (5.6)

[u®] = [N;, N., N

where N, = N,[I] in which [I] = 2x2 identity matrix

The functions N ﬂj, ﬂk waere chosen so as to give the
appropriate nodal displacements when the co-ordinates of the
appropriate nodes are inserted in eguation 5.4a. In
general,

Wi £, % ] = (X3



80

when Ni{rj. zj] - Hitrk' Zk} =0 {5.7)

These components of N arec prescribed functions of
position and it was shown that the linear function of r and
z in egn. 5.4a satisfies the criteria stated in egquation
5.7. The functiens N are called shape functions and they
perform an important role in the general formulation of
finite element analysis.
5.2.1.2 Strains

The strains and associated stresses involved in the
analysis of axi-symmetric solids depicted in figure 5.1b are

cbtained by differentiating equations 5.3(a) and 5.3(b),

Radial strain, E_ = aur =
r _E" 2
)
Axial strain, g = Buz = b
z 3]
4%
. . . _oua_ _
Circumferential strain, £, = _% = [l}bl + bz + {%]b3
; du du
Shear strain, Y = r + z = b, + b
rz 3 5
z or
which may be written in matrix form as
e 117 [~ T r -
E 0 1 0 g 0 0 b
I 1
€, 0 0 4] 0 0 1 b2 {5.8a)
& = €q - 1/r 1 z/r 0 0 0 b3
| 'rz] 0o 0 1 o0 1 0 b,
b5
bE

or symbolically

[e] = [g][bl] (5.8b)
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but [b] = [h][u] from egn. B.5(b)
therefore [€] = [g][h] [u] {5.9)

which is an expression showing that once the
displacements of all nodal points of an element e are known,
it is possible to compute the strain vector §E at any point
in the element. The strain-displacement transformation

[ae}, for an element can be extracted from eguation 5.9 as

<l
I

(9] [h] (5.10)
Therefore (e ] = [a%][u]

5.2.1.2 Element stiffness matrix

Listing the forces acting on the element shown in

figure 5.2 as a matrix, we have

e 1
a; 1qr . etc,
e _ e ) e _ 1
q_“ = qj ] q—l. {5-1—}
2
£ D
L - - .I

which corresponds to the nodal displacements ge of
equaticen 5.2. Note that qie and QiE always possess the same
number of components or degrees of freedom. The

characteristic relationship linking g~ to u® is of the form

e _,e e e e (5.12)
- E - S ¢ gp + £ o
where EE = element stiffness matrix for element e
EPE = nodal forces reg'd to balance any

distributed loads on the element
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f%c = nodal forces req'd to balance any initial

strains as may be caused by temperature
change.
The stiffness matrix of the element, [k®], will always

be sguare and of the form

(5.13)

in which keii’ etc are submatrices which are also square and
of the size 1x1 , where 1 is the number of force
components to be considered at the nodes.

The displacement approach is now employed to originate
the definition of the element stiffness matrix. We must
first let qe (as expressed in equation 5.11) define the
nodal forcés which are equivalent statically to the boundary
stresses and distributed loads on the element. The
distributed loads, (or bedy forces), QE, are defined as
those acting on a unit volume of material within the element
with directions corresponding to those of the displacements

u® at that point.

A simple procedure is adopted to make the nodal forces
statically equivalent to the actual boundary stresses and

distributed locads: impose an arbitrary (virtual) neodal

displacement and equate the external and internal work done
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by the wvarious forces and stresses during that displacement.

Let such a displacement be u® at the nodes; therefore, by

equations 5.6 and 5.10, the displacements and strains within

the element are equal to

Guﬂ ﬁuj
u€® = 8 |dul| and s = [a%] |fu. (5.14a)
k .
fu 44
L~ [ -K|

and by remaming

du.| te 6&9. equation 5.14a may be

:luk

- -

expressed more compactly as

5u® = N6d% and fe = a®dg° (5.14b)

The work done by the nodal forces is equal to the sum
of the preducts of the individual force components and

corresponding displacements, i.e.

T
e 5.15
‘5§e q ( )

while the internal work per unit volume done by the

stresses and distributed forces is

B (5.16)

to

st (a® 9 TN b T



94

Axiz of Symmet
A i ry

T 4

|
|
[
|
| -
| i
[
1
|
|

|
|
i T :k X

Figure 5.2 Triangular Element

¥

Figure 5.3 Assembly Process

F
1
3
4

Figure 5.4 Quadrilateral Element



a5

Equating the external work with the total internal work

obtained by integrating over the volume of the element, ve,

results in

FIT e ET 'ET T, .8
&6d- g = & (f ja” od(vel)}) - [ N'b~ d(vol))
v v
thus
e _ i T
1 T s a%d(vol) - 7 N b%(vol) (5.18)
v b1

The assumed relationship between stress and strain is

of the following form

g = [CL] (& - Eul + 0, (5.19)
where CL = [CL] = constitutive relationship as

derived the chapter on the B.S. plasticity model

E
-0

initial strains as may be due to shrinkage, etc

a initial residual stresses

~D
Substituting for o (eguation 5.19) in equation 5.18

leads to

e _ " T T
g = Jveae gLEd[vnli - "rveaE ELE“d{le} *

ed _d(vol) - T .
Ive§ o IvEE Ed{ncl} (5.20)

Comparing equation 5.20 with eguation 5.12 leads to the

following separation of components.

e e &T
ku =/ a® cL ed(vol) (5.21)

v
and
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ik
~Je N'bd (vol) - J

! edg d(vol)
a -o

Substituting

(] =

(5.22)

VEQF gLEﬂdfval} +

{ae][u] from eguation 5.10 into

equation 5.21 yields the definition of the element stiffness

matrix as,
T = ge divol}
Therefore

x aT
ve, &
veq.- -. -

[N
i
i

Substituting [a®] = [g][h]

give the element stiftness matrix for a triangular

{5.23)

element with the B.5. elasto plastic constitutive

characterization,

x® = (7 relg1T(cL] [g].aV [h]

-

The terms under the integral in equation 5.24

explicitly expressed as shown in figure 5.5.

5.2.2 Generalization to the Whole Region

(5.24)

Having established the conditions of overall

equilibrium within a single typical element,

necessary to assemble and analvze the hypothetical

in which all the elements participate.
this solution,

displacement compatability, and b)

it is

two conditions must be satisfied:

these operations will produce a set of force vs.

from egn 5.10 into 5.23,

ring

may be

now

structure

In order to obtain
a)

juncture equilibrium;
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displacement equations for the nodes which will inter-relate

the elements.

[Q] = [K][u] {5.25)

where [Q] = load matrix which encompasses external
forces applied at the nodes in addition toc the
distributed loads applied to the individual

elements,

[K] global stiffness matrix

I

[u] global displacement matrix for all nodes

in the system

To illustrate this procedure, consider the equilibrium
conditions of a typical node "i" in the assembled analytical
model shown in figure 5.3.

Each component of Qi has to be equated to the sum of
the component forces contributed by the elements meeting at
the node; thus

Q. =

m e 1 2
-..1 l

qQ; =9y t gt ... (5.26)

i
e=
in which gil is the force contributed to node i by
element 1, ?iz by element 2, etc., and m is the total number

of elements in the structure. Ewvidently, only the four
elements which include point i will contribute non-zero
forces, but all the elements are included in the summation

since it is irelevant to the assembly process. Substituting



9%

the relationship of eqguation 5.12 into equation 5.26 yields
the following

bu, + ... + E,

i2 bogy '-l {5.271

where gE = £ % + £F

Here again, the summation only includes the elements
which contribute to the node i, and when all such equations
are assembled (for convenience we omit the ;E term), the
result is the relationship (egn. 5.25) which we intended
to define at the outset,
Q=Ku (5.28)

=

where K = [K] = I ™[k"]
- e=]

5.2.3 Boundary Conditions

In any boundary value finite element problem, it is
imperative that every boundarv node have either a prescribed
traction or displacement field. Without this boundary
information, the solution to the system of equations in
equation 5.28 are no longer unique; in a situation like
this, the K matrix becomes singular. Mixed boundary
conditions - i.e. specified nodal point forces and specified
nodal displacements - are considered by rewriting equation

5.28 as a partitioned matrix:

Qal = [Xaa EEE] Uy (5.29)
%] Fra Fbb] s
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where
[Qa] = specified nodal forces
[Qb] = unknown
[uaT = unknown nodal displacement
[ub] = specified nodal displacement

The upper portion of equation 5.29 may be written
separately as:

(e 1 = (¥ Jlu ] + [K_,1[u.] (5.30)

Since [ub] and [Kab] are known, equation 5.30 may be
reduced as

[Q,] = [K 1M1 = [K ](u,]

and letting the left hand side of the equation be

redefined as the modified load vector, [i::fk],I we now have
Q"1 = (K ) (u] (5.31)

The solution procedure requires the determination of
the nodal displacements from equation 5.31 followed by the
substitution of these displacements into eguation 5.10 to
compute the strains within any element. Knowing the
strains, the stresses within the elements can in turn be
reckoned from the stress-strain relation in equation 5.19.

5.2.4 guadrilateral Element

A guadrilateral element, comprising four triangular
elements as shown in figure 5.4 is considered advantageous
over the use of individual triangular elements for two
reasons: a) a quadrilateral geometry is more convenient for

automatic mesh generation, and b) the condensation procedure
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which factors out the internal node (i.e. node 5} produces a
set of equilibrium egquations which has fewer unknowns.

The equilibrium equations for the guadrilateral as
developed by the standard direct stiffness technigues
involve ten eguations, which are written in the following
matrix form (this differs slightly from that presented by
Wilson (1965) in that the thermal load matrix, which is not

important in soil mechanics problems, has been excluded):

Sa - kaa kab EE {5.32)
Sh Kpa  ¥ppl | U
where [5] = matrix of concentrated nodal loads and {Sa]

and [ua] are associated with the nodal points 1,2,3, & 4
while [Sb] and [ub] are associated with ncde #5 in figure
5.4.

This partitioned matrix representation may be separated

into its two constituent equations:

(s,]

(k10w ] + [k, 10(u,) (5.33a)

Equation 5.34b may be arranged to solve for the

displacement of node #5,

lug) = - [k 170 [k 1lu ] + [k, 17 S, (5.34)

Substituting equation 5.34 into equation 5.33a renders
the expression relating the forces at points 1 to 4 to the
unknown displacements at these locations,

(s, = [k, 1lu,] ((5.35)

where

[kaa] - [kaa] - [kba][kbb]
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and an additional term
-1 1 . .
[k, ] [kp1  [Sy) which must be added to g%a in equation
X2

5.3 Computer Procedure

5.3.1 Introduction

The most time-consuming phase of this research effort
was the enhancement of the capability of an existing finite
element method (FEM) program (AXSYM) to include the bounding
surface elasto-plastic constitutive law. Several
alterations to the original program were effected in order
to accomodate the more complex B.S. stress-strain
relationship, but the dominant feature throughout the
modification process was the identification of and
replacement of the elastic rheological equations by the [CL]
matrix as presented in chapter 3. It is not possible to
discuss every aspect of the program, and hence, for economy
of presentation, the format for this section of the chapter
will consist of abridged descriptions depicted in simple
flowcharts.

5.3.2 Preliminary Information

With regards to its physical characteristics, the
source listing of the computer program (see appendix B) is
composed of approximately 2000 lines ( or 250 blocks)
written in the FORTRAN "language" which is currently
available on the University of Florida's DEC (Digital
Equipment Corporation) VAX computer system. In its present

form, the program's executicon time is about .18 seccnds of



103

CPU (central processing unit) time per element per load
step; this processing time can be less abstractly envisaged
by saying that a tvpical pressuremeter mesh (20 elements)
will allow a maximum of 500 load steps for a 30-minute
execution period (which is presently the maximum CPU access
time on U. of Florida's VAX computer). The output consists
of an echo-print of the input information and the results of
the analysis: a) displacements in the radial (R) and
vertical (Z) direction for each node, and b) the stresses at
the center of each element (radial, tangential, vertical,
shear, and the principal values of the stress tensor). For
larger finite element meshes, the generated output can
regquire significant disk capacity for storge; again, in more
pertinent terms, the disk guota needed to store the output
of a 500 lecad step pressuremeter mesh analysis with a
25-step print interval is about 1000 blocks. In conclusion,
the above-mentioned statistics reveals that the computing
capacity demanded in the execution of this program is quite
significant, and may prove to costly to the geotechnical
engineer whose computing time is only available on a
pro-rata basis.

5.3.3 General procedure

The finite element program can be separated into two
basic parts: a) data input module and preprocessor, and b)
solution and cutput modules to carry out the actual
analysis. Typical input data for the problems analysized in

this thesis include the following:
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1. Title, number of nodal points, number of
elements, number of different materials, and
number of nodes where the boundary conditions

are specified.

2. PRadius cof loaded area & atmospheric pressure
in consistent units.

3. Material properties for each material type:
denwvity, cowfficient of lateral earch pressure,

E B.5. plasticity model contants - G, K, R, 5, W,
D, N, Q; Hu’ Hr

4., Position of boundaries between elements.

5. Boundary restraint conditions.

6. Print Interval

7. Pressure boundary conditions are read before
the solution procedure for esach load step; an
example of these boundary conditions may be the
incremental cavity pressure for stress-controlled
analysis of the cylindrical cavity expansion.

The flow chart in fiqure 5.6 provides a synopsis of the

computational procedure while figures 5.7 and 5.8 furnish
outlines of subroutines SAND and STRESS, both of which play
an instrumental role in the solution technique of this
contemporary finite element formulation.

5.3.4 Limitations

Even though it is possible to simulate a variety of
locading and boundary conditions with the program in its

present form, there are two major restrictions, only one of
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which is of consequence in this report, that should be
noted: 1) the inability to model a plane stress (i.e.
constant Jz] boundary stipulation, and 2) the incapability
to accurately solve the resulting system of eguaticons from
the non-symmetric gleobal stiffness matrix whose non-symmetry
is attributable to the use of a non-associative flow rule
(Prevost and Hjorth, 1980).

Neither of these problems is insurmountable, but any
attempt to make accomodaticons for either of these restraints
were relinquished because of the excessive time that would
be required to implement these changes. The problem of the
plane stress boundarv conditicon can be overcome by
assimilating into the program a routine similar to those
used in other finite element codes (ex. Mana, 1978) to medel
boundary conditions of this type. This boundary condition
restriction hindered research effectiveness since it only
permitted finite element meshes with specified nodal
displacements.

Inasmuch as the original version of the FEM program was
intended for elastic materials, the Hookean constitutive
relationship dictates that the element stiffness matrices
and hence the global stiffness matrix are symmetric. This
symmetry feature facilitates a convenient soclution of the
system of equations; if, however, this program is to be used
as a research tool to study non-associative flow, it will be
necessary to replace the numerical procedure for solving the

gystem of eguations by one which can evaluate non-symmetric
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Figure 5.6

106

Data Input Module: HNodal guantities
such as coordinates, boundary condi-
ions; also, element informaticn such
as coernection data and material
properties. Pre-processing
activities incluede the computation
of the gravity stresses.

!

Read the pressure boundary conditian
for this step, For the simulation
of the pressuremeter test, this
boundary condition is the positive
or negative lncremental cavity

SETEES .

Establish the constitutive law for
each element based on the state of
stress, the history of the plastic
strain tenser, and the leoading
condition. These gperations are
performed in SUBROQUTINE SAND,.

;

Form the glohal stiffness matrirx by
calling SURROQUTIMNE STIFF.

1

Sglve for the incremental nodal
digplacements by executing
SUBROUTINE BANSOL.

:

SUBROUTINE STRESS computes the total
incremental strain for each element
based on the displacements computed
in the previous step. Given this
etrain rate, the plastic strain rate
and the stress rate are evaluated;
by using the hydrostatic and
deviatoric compenents of the plastic
strain rate, it is now possible to
revise and record the position of
the bounding surface for each

element.

Output the element stresses and
nodal displacements.

/

General Computational Procedure
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INPUT: Material parameters, updated
stress vector (g_, o, 08+ T.,)»
current magnitud® of plastic State
variables (n, E£}.

!

COMBUTE: |3F/an|_ . (egn 31.2.41) and
laryanl__ fegn 3.5%31 & eqn 3.2.35).
Using thfse results, evaluate

o ]arfan]tK

e
an EFVER s

Also caleculate 3A/3E leqn 3.2.47)

!

CARLCULATE: B, normal to bounding
surface, p (egn 3.2.1%), its norm
|¥F| {egn 3.2.16), and invariants of
the image stress tensor.

}

COMPUTE: 3F/ ¥A (egn 23.2.31) and

dF = J3aF x 8A , &
WA In
3F = 3F x 2A
3L 3A 3

|

COMPUTE: Bounding Flastic Modulus,
K. legn 3.2.29), and resultirg K
biised on loading condition: P
loading, unleoading or relcading.

|

USIKG the values of K _, Nyse and the
elastic constants K aRd G,]:cmpute
the elerents of the CL matrix as
dectailed at the end of chapter 3.

i

REPFAT thie procedure for every
elerent and store the constitutive
lav for wach in a 3=dimensional
matrix: CL(I,J,0),where N
identifies the eloment number.

Figure 5.7 Subroutine Sand



108

Input: Strain-displacement trans-
formation matrix and displacement
matrix for am element.

¥

Calculate the element's total atrain
rate from the input information.
Utilize the elasto-plastic consti-
tutive relationship to determine the

ThPRRE PRb: 3h the presdiibed

element.
I__

Verify that the assumed
leading state of the
element is correct by
checking ¢&: n.

§ YES

The elastic component of the
element's strain vector is now
generated since the stress change
and the elastic constitutive law are
known. Its plastic conjugate is
then the vectorial difference of the
elastic component from the total
strain rate.

Plastic state variables =-n & £ =
are computed by finding the
hydrostatic and deviatoric componentc
of the plastic strain rate tensor.

l

The current pegition of the bounding
surface as well as the magnitudes of
the plastiec eguivalent shear and
volumetric strains (n, f) are
updated. Repeat procedure for each
eloement.

EXIT
repeat analysis
with correct KF

Figure 5.8 Subroutine Stress
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stiffness matrices. During the course of this study, none
of the stress paths under investigation necessitated the use
of the non-associative flow law and therefore this
restriction did not pose a problem in analysis.

One of the less important constraints that deserves
mention is that the computer program is strictly used for
stress-controlled loads while, on the other hand, the
pressumeter tests in the calibration chamber (previously
discussed in chapter 4) were strain-control.

5.4 Conclusion

In this chapter, the finite element method of analysis
was proposed as the technigue by which to study the
expansion of a cylindrical cavity in an elasto-plastic
medium. The theoretical as well as the computational
aspects of the procedure were emphasized with regards to the
bounding surface plasticity model although the framework of
the program will allow the introduction of most plasticity
models. The following chapter will present, discuss, and
compare the results of the finite element analyses of the
pressuremeter test to the actual test data from the

calibration chamber.



CHAPTER 6
DISCUSSION AND PRESENTATION OF RESULTGS

6.1 Introduction

This chapter compares the theoretical results of the
finite element simulation of the controlled-environment
pressuremeter test (PMT) to its related experimental data so
that conclusions may be made with regards both to the
generality of the bounding surface plasticity model and to
the influence of the restrictions inherent in the finite
element computer code. The tasks involved in this
comparison include: a) the determinaticn of model
parameters from triaxial tests, b) the selection of a
representative set of these model parameters to be used in
the simulation of the pressuremeter test, c) the
determination of the magnitude of the coefficient of lateral
earth pressure which, although not immediately apparent, has
a significant influence on the stress-strain behavior during
cylindrical cavity expansion in soil, and d) the selection
of the appropriate finite element mesh to model the boundary
conditions in the calibration chamber to which the
cast-in-place pressuremeter was subjected. In addition to
the prediction of the stress-strain response, this standard
discrete numerical method of analysis manifests additional

important information such as the stress paths and the

110
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distribution and magnitudes of the principal stresses for
elements of soil within the zone of influence of the
expanding pressuremeter cavity. This data can be extremely
useful especially in the selection of approximate stress
functions to be used in closed-form soclutions to determine
soil strength parameters and constitutive properties based
on pressuremeter stress-strain results.

Before undertaking the numerical analyses described in
the previous paragraph, it is necessary as a first step in
the implementation of any new computer program to
substantiate the preciseness of the digital solution
technique by checking the computer results against a manual
calculation. Closed-form sclutions for two known stress
paths - i.e., the isotropic consoclidation path and the
triaxial stress path - were used to judge the degree of
accuracy of the computer program; excellent agreement was
established for both loading conditions. Figure 6.1 shows
the element mesh used in both these simulations while figure
6.2 contrasts the numerical solution to the academic result
of the hydrostatic compression loading.

Since this computer coded finite element method
provided the capability to subject specimens to arbitrary
boundary displacement conditions, it was possible to
hypothetically examine the performance of the constitutive
law under ancther pertinent lcading state: K
consolidation. Well documented experimental values of the

coefficient of lateral earth pressure of this Reid-Bedford
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Figure 6.1 Finite Element Used for Simulation of Triaxial
Test and Isotropic Compression Test



113

31sayg uorssaidwo) 91do130SI 103J UOTINTOS WIOJ-PBSOTD SOSIap "W 'd'd 779 aanbtg

(%) UlDJ3s BwN[OA [O30]

021 001 08 '0 0g"a Oy "0 0z ‘o 000
= o S e g f —rpt————ce O
uotgarpedd W 34 = % T 0°081
T 0°oo2
m
i) c
0'0sz =
s
(i
A
T 0°00E §
w
el
W
T O0°0DsE o
|
T o-oor
ﬁ 0 "0sr

0 "0os



114

sand were available for comparative purposes, and this
analysis, together with the cylindrical cavity expansion
model, permitted further insight into the general
applicability of the B.S. plasticity model.

§.2 Determination of Model Parameters from Triaxial Tests

Although data from a single test would have sufficed,
the results of four conventional triaxial compression tests
on dense Reid-Bradford sand were utilized in the
determination of the bounding surface model parameters R, S,
and N. As previously defined in Chapter 4, but repeated
here for convenience, R and S are the intercept and slope
respectively of the transtormed hyperbolic stress (i.e. 2nd
invariant of the stress deviator) versus strain (i.e.
plastic equivalent shear strain) curve, and N is the slope
of the critical state line which can be physically
interpreted as the critical combination of deviatoric and
hydrostatic stress which signals the initiation of dilation
in a dense soil. Three of the experiments - at confining
pressures 25, 35 and 45 psi - were carried out by another
research student, Karsten Heidebrecht, and can be found in
the Davidson et al. (1983) reference, while the fourth test,
at a 50 psi confining pressure, was performed by the author
under the supervision of Dr. Frank Townsend. Photographs of
the laboratory equipment used in this investigation are
exhibited in Figure 6.3.

Following data reduction procedures outlined in Chapter

four, the model parameters were computed and the results are
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tabulated below (detailed data sheets can be found in

Appendix A).

TABLE 6.1

MODEL PARAMETERS FROM CTC TEETS

Unit Confining Correlation
Weight Pressure R S N Coefficient
(pcf) (psi) (R2)

102.9 25 13 .34 .26 .99
103.6 35 .12 .40 «26 .99
104.0 45 16 .41 .24 .99
103.6 50 .09 .46 .25 « 39

According to the postulated relationship between shear
stress and plastic shear strain (Aboim & Roth, 1982, and
modified by Taesiri et al., 1983), the values of the
parameters R and S should be indeperdent of the confining
pressure so long as the samples were identically prepared at
the same relative density. As can be noted from table 6.1,
the unit weights (and hence the relative densities) do
indeed vary slightly among the samples but it is not
considered important enough to have such a marked influence
on the variation in the computed values of R and 5. If one
were to neglect the test at 45 psi confining pressure, a
distinct relation emerges between the parameter S and the
confining pressure. In a more classical sense, this can be
interpreted as fitting a curved Mohr-Coulomb failure
envelope since S, in a most crude manner, can be interpreted
as being inversely proportional to the friction angle in

sands (or slope of the Mohr-Coulomb envelope). It is
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obvious from the variation in the walues of the model
parameters R and S that still further research is necessary
to examine the postulation that the triaxial stress-strain
results can be normalized by the confining pressure. The
possibility exists that there may be a more appropriate
equation, such as one in which the confining pressure raised
to a certain power, can be used to more effectively
normalize the stress-strain data and so enable a consistent
set of model parameters to be obtained form a single
triaxial test.

Quite contrary to the queries concerning the generality
of the parameters R and 5, there is no uncertainty in
stating that the hyperbolic function was most suited to
model this relationship (¥J vs. n); in all cases,
correlation coefficients close to unity attested to a near
perfect fit of the data. This close agreement is reflected
in figure 6.4 where the actual triaxial stress-strain
results are plotted together with the predicted
stress-~strain response based on the derived model
parameters R and § shown in Table 6.1; for purposes of
clarity, only three of the four tests were graphed in this
figure. Besides knowing the values of R, S, and N, it was
necessary to estimate some other model parameters (i.e. K,
G, & Q) before the predictions (of fig. 6.4) along the
triaxial stress path could be accomplished. Since an
unload-reload cycle was not performed in any of the triaxial

tests, the elastic bulk modulus, K, and shear modulus, G,
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had to be reckconed from assumed values of the Young's
modulus, E, and Polsson's ratio; based on values akin to
those obtained by Taesiri et al. (1983) in his study of
another dense sanrd, K was chosen as 36000 psi while G was
assumed to be 21600 psi (or in terms of more familiar
elastic parameters, E = 54000 psi and v = .25). Several
trial values of these elastic constants were examined and
the solutions to several problems were found not to be
sensitive to these input parameters; as a result, it was not
considered imperative to perform a triaxial test sclely for
the purpose of determining these elastic modulii.

The ratio of the major to minor axes of the elliptic
portion of the bounding surface is equal to (Q-1)/N where
Q is a "trial and error" parameter and N has been previocusly
mentioned above as the slope of the critical state line.
Describing ¢ as a "trial and error" parameter in no manner
insinuates that this parameter has no physical significance
or there are no established guidelines for its
determination. On the contrary, the constant Q singly
contrels the ratio of the deviatoric to volumetric component
of the strain since its magnitude directly influences the
shape of the elliptic portion of the bounding surface from

which the plastic strain rate direction is computed; 1in

guantitative terms, higher values of Q induce larger
shear/volumetric strain ratios. The magnitude of Q however
exerts no influence on the logarithmic porticon of the

surface and hence there is little control of the
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shear/volumetric strain ratic when dilation begins (i.e.,
when the image stress tensor is on the log surface). A
value of Q0 equal to 4.0 was found satisfactory for modeling
each triaxial test during its compressive phase.

The references to strain in the previous discussion all
dealt with the axial strain while no mention was made of the
dilatation or volume strain predicted by the B.S.
hypothesis. Figure 6.5 a, b, and ¢ show predicted versus
actual volumetric behavior during the triaxial tests. 1In
both a gquantitative and qualitative sense, the predicted
volume strain concur reasonably well with the observed data
until the point at which the sample begins to expand under
the shear stress. Beyond this point, the gualitative
agreement still endures but the constitutive model starts
overestimating the volume expansion of the specimen, and a
possible reason for this has been previocusly suggested in
the discussicn of the model parameter Q. This divergency is
not as critical as it may initially seem in the simulation
of the pressuremeter test since, as will be discussed later,
the elements of soil surrounding the pressuremeter probe
reside only briefly, if ever, on stress states which induce
dilative behavior. It should also be remarked that this
inconsistency occurs only when the image stress state is
located on the logarithmic portion of the bounding surface;
present discussion at the University of Florida indicates
that this log surface will be replaced by a more functicnal

surface in future versions of the model, and hopefully, will
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thus lead to an improvement in volumetric strain predictive
capability for stress states above the critical state line.

Hardening along the hydrostatic axis is patterned by
the paramcters D and W; for this sand, D and W were
evaluated to be .0005 and .028 respectively. These
constants are assessed by fitting a curve through the bulk
stress vs. plastic volumetric strain results of an isotropic
consolidation test. The data sheet containing this test
result is included together with the CTC data in appendix A,
and the predicted versus observed stress-strain plot is
presented in figure 6.6. An important observation is that
the level of bulk stress attained in the pressuremeter tests
was considerably higher than that achieved in the isotropic
consolidation test which made it necessary to extrapolate
the calibration data in order te fit a curve which would
produce realistic estimates of the parameters D & W.

The last two model parameters that remain to be
determined are the unlcad and relocad constants, Hu and Hr'
Trial and Error techniques are usually employed to obtain
estimates of the magnitudes of these parameters which
exclusively serve to manage the amount of hysteresis in the
unload-relcad loops of the stress-strain curves. Since all
of the triaxial tests on the Reid-Bedford sand were
subjected only to monotonic loads, it was not possible to
evaluate these parameters from the pool of available
triaxial test data; alternatively, it was decided to reckon

these values based on estimates made by Taesiri (1983) for
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the sand he investigated. Hu and Hr were assumed to be
egqual to 50,000 and 150,000 respectively for dense

Reid-Bedford sand.

6.3 Coefficient of Lateral Earth Pressure, Kc

Ideally, the magnitude of the ccefficient of lateral
earth pressure, which is a prereqguisite input parameter in
the cylindrical cavity expansion model, should have been
derived from a finite element simulation of this loading
path. Results of this study (see figure 6.7) indicate that
the present bounding surface plasticity ceonstitutive model
yields values of Kn which diverge considerably from
experimental estimates of this soil parameter. Figure 6.8
summarizes the results of a detailed laboratory
investigation of K_ consclidation by Al-Hussaini and
Townsend (1975). Two important conclusions can be inferred
from a comparison of these predicted and ohserved values of
Ka; first, it is clear that the magnitudes of KD predicted
by the B.S5. constitutive model are considerably higher than
the experimentally determined ratio of lateral stress (o)
to the vertical stress {Uv] for the zero lateral strain
boundary condition. The second comment on the experimental
versus theoretical comparison of Ko centers on the variation
in the magnitude of Kq with stress level; the laboratory
study indicates that K of 0.4 was representative of the
dense sand investigated in this thesis, whereas the

elasto-plastic analysis shows values of Ko decreasing from
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.81 at ﬂv = 11.3 psi to .65 at Gv = 115.3 psi. This
postulated variability of KD agrees with the following
theoretical considerations: at higher levels of stress, the
hardening rule along the hydrostatic axis (modeled as a
negative exponential function) generates smaller increments
of plastic volumetric strain for a given stress increment.
This means that the plastic meodulus, Kp, increases as the
first invariant of stress, I, increases along this
particular stress path. As the value of Kp becomes large in
comparison to the elastic constants K and G, a review of the
CL matrix (i.e., the constitutive law) in Chapter 3 reveals
that this matrix takes the form of a constitutive
relationship dominated by the bulk modulus, K, and the shear
modulus, G. It is therefore logical to assume that the
limiting value of K, at very high streses, where Kp is
numerically much greater than K or G, is egqual to the
theoretical value based on an elastic analysis, i.e. KCI =
v/l - w) where is the Poisson's ratio. Since v has been
previously assumed equal to .25 (see section 6.1), the
ultimate value of Ko will be .33 which turns out to be a
closer approximation to the experimentally observed
magnitude of this parameter.

The validity of the Ko consolidation data presented by
Al-Hussaini and Townsend (1975) is reinforced by the
boundary pressure data recorded in the triaxial calibration
chamber during the preparation of the pressuremeter test

samples referred to in Chapter 4. After considering the
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cogent assembly of experimental data which contradicted the
B.S. Ko simulation, it was finally resolved to abort the
original intention of using the constitutive model to
provide preliminary estimates oif KD, and to use instead the
Ka parameters documented during the sample preparation in
the U.F. calibration chamber. Note however that in a few
instances of sample preparation, including a test

investigated in this thesis, the value of o, was increased

h
after the KD consolidation phase, and hence, the
lateral /vertical stress ratio was in fact greater than HU.

It is evident from the discussion so far presented in
this section that further research is required to evaluate
the utility of the B.S5. elasto-plastic model in the
simulation of Kc consolidation. Other elasto-plastic
models, such as the Lade model presented in Chapter 2,
demonstrate the capability to simulate KD conscolidation, and
any further research on this bounding surface plasticity
model will warrant an investigation into the dissimilarities
between the bounding surface formulation and its
counterparts (ex. Lade's model) which lead tc this
inconsistent prediction along the K0 stress path.

Having described the problems of simulating Ko' it is
now instructive to illustrate the significance of its
magnitude in the mathematical modeling of the pressuremeter
test. K_ determines the initial values of the radial and
hoop stresses which exist in the soil mass prior to the

expansion of the cavity, i.e. e ™ Cp= KDUZ. By using the
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definitions of the invariants of the stress tensor and some
mathematical manipulation, we find for the insitu stress

state,

2 4 - L
VT - [EKD 2 QKD} 3

I 6(1 + EKD}

But it is known that N is defined as the ratic vJ/I which
determines the critical stress state for dilation to occur,
and this, coupled with the phenomena that dense sands under
shear stresses always undergo an initial compression bhefore
dilation, leads one to expect that the initial /J/I ratio
based on the magnitude of Kc would be less than the
parameter N. This criteria aided in the selection of the
representative numerical value of N from the data in table
6.1; for example, consider a case where KD was egual to .30
- this automatically yields an insitu vJ/I ratio of .25
based on the eguation presented above. Conseguently, to
enforce the condition that scome initial compressicn must
take place before the dilation phase, it will be necessary
to select a value of N greater than .25 and if presented
with the data of table 6.1, the valuss of N = .24 or .25
will be discarded in favor of N = .26, In less technical
terms, this criteria can be construed as follows: a lower
value of Ko leads to a greater deviatoric (or shear)
component of the stress tensor for the insitu state, and
since some initial compression must be observed upon load
application, the pcsition of the critical state line must

reside above the coordinates of the insitu stress tensor in
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principal stress space. Emphasis has been fixed on this
hypothetical case because it represents a situation that
actually occurs in simulating one of the pressuremeter test
analyzed in this report.

6.4 Simulation of Pressuremeter Test

Typical output of the finite element analysis,
including nodal displacements and principal stresses at the
center of each finite element, allowed an examinaticn of the
following characteristics of the cylindrical cavity
expansion model:

a) comparison of the actual versus predicted cavity
stress—-strain plots (including the unload-reload modulus
loops) which serve primarily to corroborate or invalidate
the suitability of the bounding surface censtitutive law in
simulating generalized cyclic loading paths.

b) superior comprehension of the stress paths to
which the soil elements are subjected during the
pressuremeter test; this information will be crucial for
controulled laboratory similitude studies which attempt to
model the progression of the stress state of soil elements
subject to cylindrical cavity pressure,

c) establishing the radius of influence within the
soil mass due to the cavity pressure; this is investigated
by inspecting the distribution of radial, circumferential,
and vertical principal stresses as a function of distance

from the axis of the pressuremeter.
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d) variation in the three principal stresses - .

O, Oy = with the pressure level in the cavity; again as in
b), this information is important in laboratory simulation.
It is convenient at this point, before discussing

numerical results of the pressuremeter analvsis, to
summarize in Table 6.2 the bounding surface model parameters
(suggested in Section 6.2) which were used in the simulatien
of these tests.

TABLE 6.2

SUMMARY OF MODEL PARAMETERS FOR DENSE REID BEDFORD SAND

PARAMETER MAGNITUDE

=
Lo

.12 %
. 460
2.80 %
.0005
.26
36000 psi
21600 psi
4.0
50000
150000

O WD 00 =] T U b L R
mEOOREZOEND

u
r

[y

6.4.1 PBoundarv conditions.

As described in chapter 4, the cast-in-place
self-boring pressuremeter tests were performed under two
boundary conditions; boundary condition #1 (B.C. £1) allowed
no change in stress at the radial boundary and also
restrained vertical displacements at the specimen's
periphery while, conversely, B.C. #3 permitted no lateral
displacement along the perimeter of the sample and no change

in stress at the top and bottom of the specimen. These
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boundary conditions obvicusly controlled the selection of
the nodal displacement restrictions for the finite element
meshes used to represent each situation, and taking into
consideration the relatively small magnitude of the ratio of
the chamber radius (24") to the pressuremeter radius (1.6"),
it was found, as anticipated, that the boundary stipulations
did indeed have a significant influence on the predicted
stress-strain behavior. It can be unegquivocally stated at
the outset that the finite element mesh boundary conditions,
tecgether with the model parameters R, §, D and W, were the
predominant factors governing the simulated pressuremeter
stress-strain behavior.

One of the inherent limitations of the computer code,
aforementioned in chapter 5, is its inability to treat a
constant stress boundary stipulation. Unforturnately, such a

requirement exists for both B.C. #1 and B.C. #3 at the

lateral and vertical confines respectively. Figures 6.9 and
6.10 show the F.E.M. (finite element method) meshes used in
an endeavor to overcome the problem of the constant stress
restrictions for both conditions. For B.C. #1, the fixed
stress at the outer radial boundary is approximated by using
a longer element at the border such that the finite element
mesh is about twice the actual length of the sample in the
chamber (24" vs 55"); note that this artificial element at
the end will produce stress-strain results which more
closely model an assumed plane strain field situation.

Judging from the results to be presented, it appears that
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the attempt to model B.C. %3 was much less successful; the
"rollers", which were used to prevent vertical displacement
of the nodes in B.C. #l1, were eliminated while two
additional "rollers" were prescribed at the outer boundary
to prevent radial movement at the sample's perimeter. The
removal of the "rollers" used to prevent vertical movement
is somewhat ambiguous since it is known from radiographic
evidence that expansion of the pressuremeter membrane
produces no axial movements (Wood & Wreoth, 1977).

It can be concluded therefore that neither of the
actual chamber boundary conditions could be reproduced
exactly for input into the computer program, and it was
therefore considered necessary to make some raticnal
allowances in the finite element meshes to compensate for
the expected deviations from the exact solution.

6.4.2 Actual versus predicted SBEPM results.

The comparison of predicted vs. observed stress-strain
results of the pressuremeter tests are exhibited in figures
6.11 and 6.12; review of these graphs evinces either of
three possibilities: 1) a misrepresentation in the boundary
provisions of B.C. #3, 2) an intrinsic limitation of the
B.S. model, or 3) a discrepancy in the selected model
parameters. The latter is unlikely since the sand raining
technigue used in sample preparation of dense sands assures
a fairly high degree of uniformity (Jewell, Fahey & Wroth,
1980), and it is presumed that the measured relative density

is representative of the soil elements at the mid-plane of
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the pressuremeter. The second possibility, although not
totally out of the question, is contradicted by the good
results of the B.C., #1 simulation. As a matter of
information, a wvariety of boundary conditions were tested
for B.C. #3, and although quite divergent from the actual
stress-strain data, the F.E.M. mesh chosen in this thesis
(fig. 6.10) vielded the most realistic results. Another
probable source of error which was investigated and
systematically ruled out was the magnitude of the stress
increment used in the numerical analysis (B.C. #3 = 0.4
psi); smaller increments (0.1 and 0.2 psi) resulted in
virtually the identical stress-strain prediction shown in
figure 6.12. The same, however, does not apply to B.C. #1
in which a stress increment of 0.2 psi had to be used
instead of 0.4 psi in order to avoid numerical instability
emanating from the incremental plasticity theory. As a
consequence of this lower reguired stress increment for B.C.
#1, it was not possible to access enough computer time to
completely model the test to its ultimate cavity strain of
10%; nevertheless, the maximum cavity strain achieved, about
7% was sufficient to make a rational analogy to the observed
data.

Jewell et al. (1980), in a series of controlled
environment SBPM tests on dense sands at Cambridge
University, notes that it is likely that the suspended
pressuremeter has an influence locally on the sand rain,

thus producing around the pressuremeter a thin annulus of
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sand with random density wvariations, though these variations
need not significantly affect the overall average density
measured. Based on this cbservation, the author postulates
that the sand immediately next to the cavity wall is in fact
slightly less dense than the surrounding soil; this
hypothesis is founded on examining several numerical
simulaticons (including B.C. #1 and B.C. #3 in this thesis)
where the initial predicted response (say less than 1.75%
strain) is always stiffer than the obhserved data until some
level of cavity stress above which the effect of this local
variation seems to be cobliterated.

Gathering from the results presented in this section,
it can be asserted that the excellent correspondence between
the predicted and cbserved data for B.C. #1 substantiates
the claim of stress path independence for the bounding
surface philoscphvy. It is worth reminding the reader that
this statement is based solelv on the results of section
6.4, and if one were to support his conclusions with only
the Ko simulation data (in section 6.3), it is feasible that
the conclusions might be reversed.

6.4.3 Stress paths.

In the current approaches adopted to determine soil
strength and elastic parameters from the pressure meter
curve, such as Hughes et al. (1977) method, wvarious
assumptions about the principal stresses are implicit in the
theoretical development of these interpretation procedures.

The results of this numerical study of the pressuremeter
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expansion thus furnishes useful information on the stress
paths and stress distributions which can be employed in
future academic attempts to infer the magnitude of scil
constitutive and limiting equilibrium design parameters from
pressuremeter test results. It is not attempted herein to
present a new interpretation scheme, but rather to present
data on the typical stress paths followed by dense sand
elements of which the stress-strain constitution can be
characterized by the bounding surface model. Furthermore,
since the boundary condition #1 simulation realized more
precise predictions than B.C. #3, it was decided to present
the data of this supplementary stress distributicn analysis
only for B.C. #1 because of the possibility of anomalous
results inherent in the B.C. #3 idealization,

In terms of elastic analysis, the plane strain
expansion of a hollow cylinder subjected to internal
pressure produces successive stress states in which the
radial stress is increasing as much as the circumferential
stress is decreasing (i.e., G T Gal, and in addition, if
plane strain conditions are assumed, the vertical stress
remains unchanged and the typical stress path in stress
invariant space will be depicted by a straight line
perpendicular to the I (i.e., first invariant of the stress
tensor) axis. Figure 6.13, on the other hand, shows the
stress path obtained from a bounding surface plasticity

analysis. It will be noted that the stress path is not, as
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predicted by an elastic relationship, normal to the I axis,
but moves along an approximate straight line trajectory
between the triaxial stress path and the isotropic
compression loading path. It must be reiterated that this
stress path is only for dense sands, and has not been
confirmed for loose sands or clays.

&nother important comment that can be made upon
visually inspecting this stress path is its movement away
from the critical state line which suggests that the dense
sand elements are not underqgoing sufficient shear to
initiate dilation. It is also apparent that the ratioc of
the deviatoric component of the stress tensor to its
hydrostatic conjugate is decreasing, and this furthermore
implies that the homogencus, isotropic scil elements are
undergoing more of a volume strain than a shear strain as
the cavity pressure increases. Based on this observation,
it can be deduced that the model parameters which control
hardening along the hydrostatic axis, D and W, become
progressively more influential in the solution to the
cylindrical cavity stress-strain problem at higher internal
pressure levels. These stress paths, however, differ from
those computed by Aboim (1981) using Lade's elasto-plastic
model in a finite element simulation of the pressuremeter
tests in dense crushed Napa basalt. His theoretical study
produced stress paths which were initially wvertical and then
advanced along a slope very close to that of the triaxial

stress path.
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6.4.4 Variation of principal stresses with cavity pressure.

Aboim (1981) also examined the change in magnitude of

each of the principal stresses {Ur, 9 + %) with increasing

z
CylinQrlical cavlily pressure it meQlia characterlzed by
Von-Mises and Tresca vield criteria; these results are
presented in figure 6.14. A similar set of data, extracted
from the bounding surface analysis in this thesis, is
presented in figures 6.15a and 6.15b for the B.C. #1 element
mesh shown in figure 6.9. Since the stress gradients are
extraordinarily high in element #1 (which can be seen later
in figure 6.16), it was not possible to distinguish clearly,
the pointe at which the incremental circumferential and
vertical stress changed signs; consequentially, it was
necessary to include analysis of another element (see figure
6.15b) where the effect of the cavity pressure was
attenuated sufficiently enough to allow a more distinct
observation of the variation in principal stresses; element
$6 of B.C. #1 was chosen for this purpose.

A comparison of figures 6.14 and 6.15 reveals that the
trend in the radial stress with cavity pressure is
analogous for all three constitutive models (i.e. bounding
surface elasto-plastic, Von-Mises elastic-perfectly plastic,
and the Tresca elastic-perfectly plastic). Note that in
figure 6.14, the variation of the principal stresses is
exactly as predicted by elastic analysis up to a cavity

pressure slightly greater than 100 psi.
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Qualitatively, the circumferential stress undergoes the
same changes for the three models considered, and the key
difference is the magnitude of the cavity pressure at which
the increase in hoop stress starts. A logical comparison
cannct be made among all three cases since the material
considered for the Mises and Tresca criteria (Napa basalt)
is different from the material (Reid-Bedfecrd sand) used in
the B.S. analysis, and alsoc, it has not been ascertained at
what distance from the pressuremeter axis the results shown
in figure 6.14 applv. Nevertheless, according to B.S.
theory, it can be concluded that the circumferential stress,
although it never becomes a tension stress in dense sands,
does undergc an initial decrease until some peint at which
this stress starts increasing at a rate somewhat lower than
that of the radial stress.

Figure 6.15 alsc indicates that the vertical principal
stress very rapidly becomes the intermediate principal
stress and assumes this role for the remainder of the cavity
expansion phase. Wood and Wroth (1977) have confirmed this
postulated behavior of e in their true triaxial tests which
were used to study failure modes related to pressuremeter
tests. This response, which shows ﬁz increasing at a rate
between that Df{% and o,, effectively ensures that the
vertical stress always rcmains the intermediate principal
stress and is hence consistent with the whole method of
analysis of the results of pressuremeter tests which assume

that this stress {Uz] does not influence the hehavior and
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that all deformation, and ultimate failure, occcurs on
vertical r:% planes.

6.4.5. 5Stress distribution with distance from PMT axis.

When a pressuremeter probe is inserted into the
subsurface, it is important to know the radius of the
cylindrical soil zone which is going to influence the
pressuremeter stress-strain curve, Figure 6.16 represents a
typical distribution of stress as a function of radial
distance from the pressuremeter axis. Evidently, the

constitutive properties cf the soil elements within an

n

approximate distance of 15 inches from the proba's axis
exert a major portion of the influence on the predicted
stress-strain response. It is also obvious that the
elements of soil within about three inches from the
expanding membrane are subjected to the largest stress
gradients, and this manifests the importance of not
disturbing these soil elements during self-boring

operations.
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

The primary goal of this thesis was to critically
examine the practicality of the bounding surface
elasto-plastic constitutive model along stress paths other
than the triaxial and the isotropic consolidation loading
paths which were used to standardize the model parameters.
The outcome of this investigation indicate that the model
performed with mixed success along the designated impartial
stress paths, i.e. the pressuremeter stress path and the KU
consolidation path. First, the simulaticon of the scil
response when subjected to the cylindrical cavity finite
element representation generated a "pressuremeter curve"
which agreed closely with the experimentally observed
stress-strain behavicr. This statement is however only
valid for one of the laboratory boundary conditions
reproduced (i.e. B.C. #1), and it is perhaps appropriate not
to include the results of the B.C. #3 simulation in an
appraisal of the utility of the model since the results of
this test may have been alternatively biased by the
representation of the boundary state used in numerical
analysis. The second "general" loading path scrutinized, Ka

consolidation, afforded less impressive results; the

magnitude of the coefficient of lateral earth pressure was

1418
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much higher than the observed value, and, more
interestingly, it was found that the bounding surface theory
mathematically modeled the value of K, as a decreasing
function of the level of bulk stress.

We can therefore conclude that the bounding surface
constitutive eguaticns functioned rationally along the
pressuremeter stress path, but failed to provide credible
results in its application to simulate the magnitude of K_-

These problems that arose in the course of research
suggest a host of possible arenas in which to concentrate
subsequent research efforts. The following is a list of
recommendations which may be categorized under three general
headings: 1) the bounding surface elasto-plastic model, 2)
the finite element computer program, and 3) the
controlled-environment pressuremeter tests.

Conclusions and Recommendations on B.S. Model

la. A comparison of the B.S. model tc other commonly
used elasto-plastic theories with the intention of

identifying the key differences which lead to the erroneous

Ko predictions should be of foremost importance. The Lade

model (presented in Chapter 2) has been used successfully to
model this loading path (Aboim, 1981), and it will be
illuminating to comparatively explore the elements of both
these constitutive laws in order to recognize and correct
the existing problems in the mathematical modelling of Ko by

the bounding surface theory.
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1b. The three-dimensional shape of the bounding
surface in principal stress space can be visualized by
imagining cross-sections cut through the v"J vs. I plane and
the octahedral plane. The form of the surface in each of
these planes plays an integral role in determining the path
of the plastic strain rate tensor since its direction is
uniquely defined by the normal to the bounding surface at
the image stress coordinate. For the present bounding
surface model, the shape in ¥J vs. I space is shown in
figure #3.1 while the shape of the surface is circular when

viewed on the octahedral plane. The significance of the

functional form on the octahedral plane becomes evident when

one realizes that the soil response is indifferent to the
shape of the surface on the octahedral plane whenever two of
the three principal stresses are egual. This happens to be
exactly the case for the triaxial test and the hydrostatic
compression stress paths, both of which are used to
calibrate the model. However, under general loading
conditions, such as in the pressuremeter stress path, where
the three principal stresses are changing simultaneously,
there is movement of the stress path arcund the surface on
the octahedral plane, and as has been mentioned, none of the
experiments used to calibrate the model offer any indication
of the performance of the constitutive law when the stress
path moves along such a three-dimensional course.

Since the conventional laboratory experiments presently

used in calibration procedures do not provide any grounds
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for justifying the use of a circular bounding surface
section on the octahedral plane, the auther urges the
initiation of a laboratory study at the University of
Florida to inspect the suitability of the surface in
predicting soil response when all three principal stresses
are permitted to vary; such an investigation was carried out
by Dr. Lade, who is now at UCLA, using a cubical triaxial
device, and his results suggest the trace of the
yield/failure surface on the octahedral plane should be as
exhibited in figure 2.3. The writer therefore also
recommends a feasibility study intc possible replacement of
the current functional form of the bounding surface by the
equation of the yield criteria (egns. 2.7.9 and 2.7.12) as
proposed by Lade.

lc. Another important aspect of general loading paths,

which is not taken into account by the existing bounding

surface theory, is the influence of rotation of the

principal planes on the stress-strain properties of the soil

medium. If we use standard triaxial test data as the source
of information for proposing the shape of a bounding
surface, we cannot generalize this shape for arbitrary
loading conditions unless we assume that the material is
always isotropic or the principal planes undergo no rotation
as a result of the applied general loading. Geotechnical
engineers do encounter many practical situations where the
coordinate reference axes of the principal planes are not

fixed: for instance, such a situation would have emerged in
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this thesis if we had considered an axi-symmetric expansion
cf the pressuremeter without the constraint of plane strain.
Based on these arguments, it is advocated that a controlled
study be performed te investigate the effect of principal
plane rotation on the constitutive nature of the material;
the ideal apparatus feor achieving this objective would be a
triaxial test on a hollow cylindrical specimen subjected to
axial and torsional stresses (Saada and Townsend, 1981).

1d. Presently, stress-induced or native anisotropy is

modelled by using a non-associated flow law in which
normality is associated to a plastic potential rather than
to the bounding surface. The approach involves finding an
appropriate potential function to simulate the aniscotropic
gualities of the material; in the opinion of the author,
this approach has no rational basis since it is merely a
curve—-fitting scheme used to recreate the laboratory test
data. Although an in-depth strategy has not been fully
ruminated,; the author proposes a concept for modelling
anisotropy which combines the use of an ellipsoid as a
density function (similar to that used by Chang, 1983) to
devise an anisotropy index which can then be introduced into
the framework of the continuum mechaniecs approach. The
shape of the density function (see figure 2.4 c) will be
controlled by the magnitudes of the principal stresses which
bears greater physical significance than the plastic

potential function in manifesting the degree of particle
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packing (or number of inter-particle contacts) in the
principal stress directions.

le. The wide variation in the computed meodel

parameters R and S demonstrate the necessity for a

reassessment of the method used to normalize triaxial
stress-strain data. Some sort of statistical analysis will
be useful in seeking an improved function of the confining
pressure which could be used to produce a consistent set of
model parameters from a single triaxial test. The data
suggests that the confining pressure should be expressed in
exponent form with the exponent being greater than one; an
additional model parameter can be included by making this
exponent a variable to be determined by trial and error.

1£f. The deficiency of good triaxial dilatation

predicticns lends credence to two conceivable modifications:

i) the logarithmic pertion of the bounding surface should be
substituted with a more suitable continuous function such as
a hyperbola, and ii) the parameter Q, which control the
major and minor axes of the ellipse, can be experimented
with as being a function of the hardening parameter rather
than fixing it as a constant value for all ranges of
stress-strain behavior.

lg. From a more fundamental standpoint, Malvern

(personal communication 11/2/83) expresses some uncertainty

regarding the use of the plastic strain tensor as the sole

substate variable to describe the contemporaneous

constitutive equations of many materials including soils.
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He argues that it is possible to arrive at the same state of
plastic strain in a soil mass by following very dissimilar
loading stages, but we would expect the soil response to be
somewhat dependent on the detailed history of its loading in
order to truly characterize its constitution. Therefore,
using the plastic strain tensor does not afford a means of
completely defining the current stress-strain
characteristics of the material, but he goes on to add that
we are yet to detect a suitable replacement or complement to
the plastic strain tensor as a state variable. Finally,
Malvern concludes that we should in no way expect to
precisely model general behavior from a simple
phenomenological model since we do not reckon inte these
equations the microscopic factors affecting soil response
such as the texture, size, shape, angularity, etc.

Conclusions and Recommendations on Computer Program

2a. The most crucial limitation of the computer

constant stress boundary condition. The author feels that

the results of B.C. #3 pressuremeter simulation may have
been more closely modelled if this boundary condition could
have been imposed. If this program is to be used in the
future for similar applications, the writer strongly
recomnents incorporation of Yhe constant stress boundary
condition capability.

Zb. The [CL] matrix (i.e. the constitutive

relationship) which is used to determine the element



155

stiffness matrix in the finite element program is assumed to

be symmetric; this matrix is only symmetric however when
associative flow is implemented in the bounding surface
analysis. It is possible that in some eventual research
situations, a non-associative flow rule with a corresponding
asymmetric [CL) matrix will be appropriate for analysis so
it is important to consider modifying the program to solve
for the nodal displacements in the terms of the nodal forces
when the element stiffness matrices (which are stored in the
global stiffness matrix) are not symmetric; in matrix
notation, this is represented as [Q] = [K][u] where Q are
the nodal forces, K is the global stiffness matrix, and u
are the nodal displacements. This would require the
replacement of the present solution technique in the
subroutine BANSOL by a more general Gauss-Jordan or
Gauss-Seidel method for sclving the system of simultaneous
linear eguations.

2c. In elasticity, the strain definition is based on
an initial state against which the current configuration is
compared; it is assumed that the detailed process by which
the material has moved from the initial state to the current
configuration does not affect the final state, provided the
process is elastic. Even with this assumption the
characterization of the state of strain is not so simple
unless the displacements and displacement gradients are
small; in fact, only when they are infinitesimal is the

so called small strain theory rigorously true.
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Nevertheless, in metals, where elastic strains usually are
not much greater than 0.002, the infinitesimal strain theory
gives good results for practical purposes (Malvern, 1369},
and since this computer program was originally developed for
linear elastic analysis of metals, it was therefcre
appropriate to use the Lagranian description of strain.

When the displacement-gradients are not small compared to
unity, as may be the case in elasto-plastic analysis of soil
stress-strain response, it will be necessary to improve the
precision of the numerical analysis by introducing a
different characterization of strain. Before going on to
suggest a better option for describing the strains during
elasto-plastic analysis of soils, it is instructive to
explain the relevant description of motion of a continuum
{based on classical non-relativistic kinematics): the
referential description has as its independent variables a)
the position of the particle in an arbitrarily chosen
reference configuration and b) the time t. However, for
elastic analysis, the reference configuration is usually
chosen to be the natural or unstressed state at time t = 0,
and this is the so-called Lagrangian description which is
presently used in the finite element program. It is advised

then that we replace this strain description by a

referential description which is updated after application

of each load increment (this is commonly referred to in

literature as an updated Lagrangian description). The basic

difference between the Lagrangian description and this



157

proposed updated Lagrangian description would be that the
computation of the element strains will not be based on the
unstressed configuration, but more realistically on the
continuously revised geometry of the finite element.

Conclusions and Recommendations on SPBM Lab Tests

3a. An attempt should be made to perform at least two

pressuremeter tests under identical conditions in order to

judge the degree of variability in the prepared samples
intreduced by the sand rain technique. This will also
indicate the level of reliability of the observed cavity
expansicn data so that these tests may be able to serve
unquestionably as a reference data base by which the
predictive capability of constitutive relationships can be
validated.

3b. Since the computer program in its present form can
only model known displacement conditions at the boundary, it
is advisable, if a similar study is every done in the

future, to subject the expanding pressuremeter to the

boundary conditicn combination in the calibration chamber

which permits no lateral or vertical displacement of the

sand specimen. In modelling such a boundary condition, it

will not be necessary to make adjustments to the finite
element meshes, which proved to be an awkward demand in this
research, to compensate for the constant stress boundary

conditions which could not be represented exactly.
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TRIAXIAL TEST DATA
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DCTOBER 28, 1983 15:13 NERDC =-- SYSTEM SUPPORT UTILITIES

CI.‘}*&I‘{'{ll‘ll*dIIII"'I‘I*‘*i‘l}ﬂll‘ifl[fli'l‘[IQ'II‘F*IlIQI*‘I‘I'
ANALYSIS OF AXISYMM-TIRIC SOLIDS BY THE FIMITE ELEMENT METHOD
CHNETITUTIUE LAW 13 ROUNDING SURFACE PLASTICITY HMODEL

PROCARAMMED DY DIV SEFREERAM
THIS PROGRAM IS A COMBIMATION OF ORIGINAL PROGRAMS WRITTEM
oY WILSOM (I.E. AXGYH) & TAESIRI (ELASTO-PLASTIC CONSTITUTIVE LAWY

Qbﬁii|itliifl&li&illii&**lriwilif|*I*1*iillib*Ii|+i!lll‘ﬂllfl*lilifﬁhq
IMPLICIT REAL®D (h=H, 021}
REAL#*4 HEDIZ20)
CDHHUNIINTGHKNUHNF-HUHEL.NUHHAT-HUHPC-NP.IHClﬂﬁludﬂﬂtiﬂi.NPLﬁTE.
1 NUHCEL-NUHRDH.]Xtﬁﬁd-EI.NFFI.NFPE.NPP:HT?FE-NETEP.NDUHHV‘SEDI-N.
1 ICHANGE-HHKFH]NT-IPRINT.ISUTHDP.NCHIT
}.EE(7}.ET{10} MATYP(34)

xlzlalglzlziyl

COMMON/PROF /IO S0, AKD (30
CDHHUH!PAHHIEG.FN;IR:KE.KTrXU.IHrKD.EN-RIU,GAHHH;HHU-HBL
CDHMDN!LD&D#CDDEI&DG};TtﬁDOI.TEHP;PRIEDI-ACELZ-&NHFG-QNGLEI4)
CDHHDN}GEEHKHI&UU!-IE&DDiqUﬂtﬁﬂﬂi-UI:GQO!.HADIET{Eﬁ}-ELEVISﬂ!
1, ROWTHP (34, DILT (400, 2)
CDHHDN!ETHSS{HIGHﬂ{#:5501-ﬂ-FZEﬂﬂ-RIEﬂD;GETHEEEHﬁﬂI-

1 PHTMrAIDlEﬁD!.ﬁHhRD!ﬁﬁD)qiﬁHARDtﬂﬁﬂI-ETﬂtﬁﬁﬂlnEIGDDT#&.!ﬁU];
1 PHYOM, BRS{S50), ZETALSS0]
CDHHUNFAHGJSEIG.lﬂlrFI15)-TT(4J:DDIB-3!.HH(6:101r

1 RR(4). ARE(S, DL0Y. R PI4.5$G?;RHT{4.5&GI.12(4?-C{4a41.EL(4-4.5501-
1 H{&aIﬂ}.Dtb.bl;Ft&aID}JTFlb).1111011LHlﬂ!.DﬁDETn{ﬂﬁD}.

1 DADZETA(S20). D nDETﬁ{EED?.DKADZETA(E&D};VN:&.550?:HETAt5501-
i g%g?é@;gg?}qIEICHIEBGI-DI TALSS0), DETAL(SB50, RRR (D, 3301,

COMMON /BANARGY DIL1156). Al11&, 581, MBAND, NUMBLK
cniu.ii*i*p*lqﬂa-i#&#ifl#nil*li|*Illl#1irilil*l{|l.ll}iiill{kn*i&ii!ilii
C CALL TSKTHME
Cll**l*l—il e s d i TSRS e e ST TS 2o o 2ot 3 B0 RS
c INITIALIZE

ACELZ=0.0

ANLFE=0. 0

po 9970 I=1,20

16C(I)mQ

JEC(1)=0

990 FRII)=0

9991
992

g993

94
95 PlJi=0

gg9se X101:=0
0o 7977 l=1, 400

COGEL] 1=0
Ti13=0
R{T)=0
211120
URLL =0
997 UI(Ii=0

9998 FADIST(II=0

goee DISP{I.J1=0

169

CARDLI

BCH T LT P e i ot e
SLIA= 00D~

259
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OCTOBER 28. 17983 1%: 13 MERDC —-— SYSTEM SUPPORT UTILITIES

D
9989 SIGHACL, Ji=0

r 3

FFE7

FTES

-

9983

=
3
n
(=]

9984

[
]
'l
-

583

F982
981
780

=g 3U3808RTEIRES BRUEENIRE
] lhjgl

2975 A(T, J)1=0

Cli"***i*i{ifIﬂﬂl'III'ﬂii*lil{lGI'ﬂiiiiii."li“ill"if"ﬁ*‘ilflilf"li

c
C READ AND PRINT OF CONTROL INFORMATION AND HMATERIAL PROPERTIES

C
Casassssisisisiassdinsddfisssd -iasfisnan S R AR SRR R R
S0 READ (5. 1000) HEU, NUMRE, MUMEL , MUMMAT, NP, NOC, NEC
glr!gh'l;ﬁ (&, 20000 HE=11, NUMNE, NUMEL . NUMMAT. NP, MBC., NEC
A P

M E =0
WR1TE({ &, 2030)
CHEap s R s e et s s sis s nii i st sttt ittt ssmniiirsiisasstistassdinssnsisn

C
E READ AND PRINT FIRST CYCLE LOAD APPROXIMATIONS AND ATH PRESSURE

c.**...‘l'{l*,*'*l*l]I{'ifi'*'l“i"'*ﬂ*'llf'"'1*“‘*I"‘iﬁﬁ‘.“i‘l"l‘
WRITE (&,203:1)
READ(S, 1003)RZEHO, PIERD, PATH
WRITE(&: 2012 )RIERD. PZERD, PATH
*i|fppi&qf{gifiigﬁiliifiqq&iiiiliii'Giﬁlllliiiill}lillI!li*!illilil!lll

C

c

C READ AND PRINT OF HMATCRIAL PROPERTY VALUES

E THIS DATA REGUIRES TWO CARDS PER MATERIAL TYPE
c

SHSES SRR EAT SRR ey s s s R R LS s s s R L
=4 DO 39 HM=1, MUMMAT
READ (%, 1001) M, ROEMI. AROCM) . EG: EX. AR, XS, XT. XU, %W, XD, ON. RIO
SCAMMA, HBU. HEL
859 WRITE(L, 20151 M. ROCH) . AKOCHY . EG. EX, XR: XS. XT, XU. XW: XD BN, RIO,
sGAMMA, HBU, HBL
2015 J‘]'_EIHI':FE'Z{ 15, "MATURIAL # =7, 15/

$1X. NSITY =*. F7. 47

$1%, 'COEFFICITNT OF LATERAL EARTH PRESSEURE =°.FL10. 2/
$1%, ‘SHEAR MODULUS =, F10. 0F

£1%, ‘DULK HODULUS =, F10 0OF

#1%, 'R =*,E10. 5 10X, 'S ="', E10. 5/

$1%, 'T =*,E10, 5 10X, "U ="', E10. 5/

%1%, ‘W =*,E10, 5 10%, ‘D =", E1Q. 3/

CARDLI

[a]s]
A=

e L
Q0 Qo

e ke
e et e sk )
s WN=0-0 O
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OCTODER 28. 1983 1%:13 MERDC ~-- BYSTEM SUPPORT UTILITIES — CARDLI
%1%, ‘SLOPE OF THE CSL =*,E10 5/
1¥, ‘RATIO OF MAJOR TO MINOR AXES OF ELLIPSE =", ELQ 3/
$1X, ‘CAMMA = USED IN MAPPING RULE =<, E10. 5/
s1X, ‘COMSTANT USED IN COMPUTING UNLOAD PLASTIC MODULUS =',E10. 35/

$1%, ‘CONSTANT USED IN COMPUTING RELOAD PLASTIC MODULUS a*, E10.5/)
CIIliilfiilklf'lI4+lt‘lliI}ll!iill*lllll*ll!iIfIﬂ*iiillfli*illli“liiil{

c
C READ POSITIONS DF NOUNDARIES BETWEEM ELEMENTS

I 2 2 2 o 8 8 o 2 PR R EAET BRI R SRR ERE S04 50 RESE SRS RN o
READ (5, 1003} NPLATE, NUMCOL, NUMROW, NLHFRE, NRHFRE

L=0
101 READ(S, 10021 M, RADISTIN)
IF(N. EG. 1) GO TO 102
DEL TH=N-L
DELTRﬂiHHDIETEN)-H&DIETIL?IIDELTH
102 L=L+1
IF(L, EG. NUMCOL+1} G0 TO 103
IF(L_EG. M} GO TO 101
RADISTIL)=RADIST (L -1)+DELTR
GO 70 102
103 L=0
104 READ (5., 10071} M, MATYP (M), ELEVIN)
IF(N_EG. 1} GO 70 1053
DEL TH=N—L
DELTEL=(ELEV(N)-FLEV{L)}/DELTN
105 L=L+1
IF({L. EG. MUMROW+1) GO TO 10&
IF(L. EG. N} GO TO 104
ELEV(L )=ELEV(L—-1)+DELTEL
MATYP (L) =HATYIP(L-1)
GO TO 105
c4|.f.¢l+'§1*i}111'14II+|+{**+&{*+I+I||+II!|*ﬁflIlllidhiiliiii*lllililnw

=
E GENERATE NODAL POINT DATA

c At ERAgtEEEREER e 2R L L B2 2 8 2.2 FrT TS S R L AR & 8 o nd gl Y e 2= 2R L e - X ]
10& HNCP1=NUMCOL+1
MMHF 1 =NUMROW+1
MMP 1 eNPLATE+ ]
NPP2=NFP1+1
NCGL=0
NRCW=0
OO 107 N=1, NUFNP
MCOL=NCOL+1
M?UH?NREH+$
NCOL. EG. NCP), AMD. NARHFRE. EG. O} CODE(N)=1.0
COL. EG. 1. AMD. NLHFRE_ EG. 0) CODE(MN)=1.0
AOW. EG. N1 ) CODE(N)I=3. 0
=RaDIST (NCUL )
-ELEE(NRUH}
N)=0, O
WCOL. LT, NCP1} MROW=MROW-1
(M. EQ. NPP1. AMIL. N, 2T, 1) NROW=NROW+1
HNCOL. EQ. NG T} MIOL=0
(M. EQ, NPP1. AMD. N, 3T. 1) NCOL=D
INUE
Ac. EG, 0) &0 10 5000
Ol N=1, NLC
READ (D, 10061 MM, CODE(MPNT, URTMPRI. UZ (NPN]
108 CONTINUE
3000 CONTINUE

HLHJE

oGO Ce R LA LR LR LB LALALE A}
iﬂbughﬂhﬂmHHPEhUhhd sﬂﬂriﬁuhhﬂl =3 o

B e i e e B e P e Ll
Bobhbhhbbd b

e s s B B i i e o e o i ke

o ol el G O O
UMHCLUNQE

2]

]

~
—=ZEFM
=z

il

=]

z

nr

n

[=]
s ot
e e T e e
=310~ O~ L8

MANMND=~TITT
- e E T -

107

0 et 0t it et (O Pl T et bt

UEE“

-
e Bk e
oo DomEom

o~ RUMN=O

2
3
i
3

NUMNP
IF(MPRINT. GT.0) €0 TO 3109
WRITE (& 2004}
MPRINT=73
3109 MPRINT=MPRINT=-1
WRITE (&, 2002) N CODE(NY, RIN), ZIN), URITMN). UZ(N)
109 CONTINUE

-
i



172

OCTOBER 2B. 1983 15: 13 MERDC — SYSTEM SUPPORT UTILITIES == CARDLI
Csssanissiisssianauiansensts RS R R 192
Cc 193
C GENERATE ELEMEMT DATA =;;
Cossstaisrs st b it itiiior s sl iisssissssniiniitiaissnsassiassintsinss 194
NROW=0 198
NC DL = 199
DO 100 N=1, NUMCL 200
NCOL=NCOL+1 =01
NROHA=NROW+1 202
IX (N, 1)=M+NROW-1 203
IXCMN: 2)=TX(N: ]} =MNUMCOL+1 204
IF (N.LE. MPLATE) JX(M 21=TX{N. 1Y +NPLATE+1 203
IXIN. 3)=IX (N, 2)}+ 204
IX(N, 4)=IX{N.1)#1 =207
I% (N, 5)=MATYP { NROW 209
IF(NCOL, LT, NUMCOL ) hHDH=NHDH 1 209
IF (N, EQ. NPLATLE )} NROW=NROW+1 210
IF(NCOL. EQ. MUMCOL } NCOL=0 =11
IF (M, EQ. NPLATE ) NCOL=D 212
100 CONTINUE 213
JIFINEC. EG. O) &0 70 5001
DO 110 N=1,N:-C 215
READ(S, 10071 MNEL. IXI{NEL. 5) 214
110 COMTIMNUE 217
5001 CDMTINUE
MERINT=
DO 111 NFI 1EL 218
IF(MPRINT GT Gi G0 TO 3111
WRITE (&,2013}
MERINT=Y3
3111 MPRINT=MPRINT-
WRITE (&, 2003} N-{IIEN-I}JIHI;EI 219
111 CONTINUE
Catstsspeisieasenicidiiapetndttsnssnss rEESEtE SRR SR LDAREENEREARREET IR NS %g?
c
E FRINT NODAL POIMNT AND ELEMENT MESH g%%
cp.‘.*'+i"+|"p¢|:§§'|i+qad*d*iiiilllall***illillliilllﬁ!i*ﬂ*i!lililtii 224
HWRITE t(&. 2020} 220
IF (NPLATE) 1103.114,113 224
113 IF (NUMCOL, GT.:1) &GO _TO 120
WRITE (&, =2018) (Nl NO=1,NPP1)
WRITE (& 201%) (N-,NE=], NPLATE)
¢0 70 121
120 HRITE (&.2048) th; nNU=1. NPP1)
WRITE (& 2047} « NE=], NPLATE)?
121 NRM=NUMROW=-1
NF KR =NPP2 =30
NFE=NFP] 31
@D TO 115 232
114 NRM=NUMARDW 233
NFNP=1 =34
NFE=] =33
115 DO 11& N=1, NRM 234
NLNP=NFNP +NUMIDL 237
NLE=NFE+NUMCII_~1 =238
IF (NUMCOL,GT. 21} GO TO 122
WRITE (&, 2018) (MDD, ND=NFNP, NLNP )
WRITE (&, 201%7 (M, NE=NFE. NLE)
eD TO 123
122 WRITE (& 204B) (N1 ND=MFNP. NLNP)
WRITE (&, 20493} (N, ME=NFE. NLE)
123 NFEMNP=NLNP+1
FE=NLE+] 242
116 CONTINUE 243
NFNP=NUMNMP—NUHCOL 244

IF (NURCOL.GT.:21}) @0 TO 124
HWRITE (&, 20130 (MU ND=NFNP, NUMNP )
GO TO 123
124 WRITE (&, 20487 (NI, ND=NFNF. NUMNFP )
125 CONTINUE
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I EIEI st a I s e s e Y I R R e R R R N T Y Y 2446
C 247
c DETERMINE BAND HWINTH E:E
Ey--.ibf--.rp*li&*lfiillili&iii{i{iififliirliiiififliiIfii{iib{f‘ii#fii& 250
=0 251
DO 340 N=1.NUFEL 252
DO 340 I=1.4 233
DO 325 L=1.4 254
KE=TABS{TIX{M, T} -IX{N.L}} 235
IF (KK=J} 323,325,320 254
320 Je=KK 257
323 CONTINUE 258
340 COMNTINUE =297
MBAND=2%.J+2 260
IF (MBAND. GT.54) HRITE(&, 2017) 241
IF (MBAND, €T. 54! @O0 TO 550
LI i sl s e R e e e R Y R R YRR ] 243
c 264
c INITIALIZIE DIGPLACEMENTS AND STRESSES IN PLATE %gz
I IR L R e e e P S P S PR NS Y T 267
LD 3 N=1, NUMNP 2468
DO 3 I=1:2 249
DISPI{N, I}=0.0 270
3 CONTINUE 271
IFI{NPLATE. EQ. O) €D TO 3002
DO 4 N=1.NPLATE 274
GSTRES(NI=0. 0
DO 4 Jml. 4 275
SICHMATIL, N)=0. 0 274
CONT INUE 277
EDDE CONT INUE
CEaaRssasas b distinaRstl et EosnEdaAna i et adatitoinaianastie i aaasreannaonens 278
c 279
c CALCULATE GRAVITY STRESSES (MODIFIED 4/8/82 PJB} Eg?
Cc
CHE8 244834385558 50 0000040800 EEEEetEtitsisdised s Bt i i-iiree e s 'Z_EE
NLHAX=NUMEL-NUMCOL+1 283

DO & NR=NPP]1, NLMAX. NUMCOL
DO 5 NRP=1. NUMCOL

s 2
(NY=d SERO(MTYPE)®#(ZCIL)-Z( L))
EQ. NPFP1) GO TO 5
=N—NUMEC DI
m[X{NBFOR., 5)
{NOFOR, 1)
XI{NBFOR, 2)
GSTRESrN1=95TR55<NJ+BETR55(NEFGHJ+D.uinntHTYPEjitItILI-IIJLI}
5 CONTINUE
& COMTINUE
MPRINT=0
DO 20 N=NPP1.MNUMEL 30&
MTYPE=IX (M., 3) 307
GEZ=GETRESIN) 200
GSR=CSIeAR0(HTYPE) 309
eST=CSR 310
GSRI=0. 0 311
IFIMPRINT, GT.0) GO TO 7
WRITE(&: 19970
WRITE(&, 1798)
MPR
MP

INT=7&
7 RINT=MPRINT -1

WRITE(&, 1999} M, €5R, G5Z, 65T GSRZ
20 CONTIMNUE

CEAESEFRA SR GRREH R FRIRd 4SS4SR IR At drdrilanaagntaingiiaisinsspigneniis

E CALCULATE APPRUXIMATE LODAD STRESSES
C

[ATATATATATA]
frecpruegunpaueu
[ TR AR L]
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Cossassiiassssnssass it iinadiida s issgistisiad i s tasissssissssen 44848004
DO 10 N=NPP1; NUMEL
IRs=TXIM, 1}

KK=TX{N, 3}
MTYPE=IX(N. 3)
IDIST=T(NPP2I={(FIIKI+I{KKIDI 2. O)
RDIST=I(R{IK)I+HI{KKII/Z. O
SFACTR=(RZEARDe&2) /{ ([RZERD+IDIST ) #&2)
C BEGIM MODIFICATION FOR FRESSUREMETER B. C.
SFACTR= 1.0
C END OF MODIFICATIDN
IF(ZDIST. LT. (RDIST-RZIERD)} SFACTR=0.0
SIGHMA(2, N)=P2IFHOeSFACTR
SIGHMALL: N)=SIGHMALY, NI +AKDIMTYPE)
SIGHA(I, N)=BICHALL, N}
SIGHAL4, N)=0D. 0

10 CONTINUE
27 MPRINT=0
DO 11 N=MNPP1.MUMEL
IF(MPRINT . GT.OD) &0 TO %
HWHRITE(&: 1994}
WRITE(&: 19987
HPRINT=74&
9 MPRINT=FMPRIMT-1
WRITE (& 1999) N: (SIGMAL]T.N), I=1,4)
11 CONTINUE
CHssndrsisidstsssiiitisisiississsssssinssisditinsiiisinsindsvaassnsnntndes

[
L= ADD GRAVITY STRESSES TO LOAD STRESSES

E]biii*‘i{i{i{lf}llq{ﬁ*I{i*{iliill}'liIQI*"'**ﬁ'*‘l‘lfiil"'.*"'*""‘
DO 30 N=NPP1.: MUMEL
HMTYPE=JX (N, 3}
SIGMA(Z, N)=STGHMALZ NI+BSTHES(N)

GHALL1, N)=BIGMAL]l, N)+GSTRES{N)*AKODI{MTYPE)

MACT: N}=ST1GEMAC] M)

YPEmIX(N:, 5}

(M) = AMDIMTYPE)®#GSTRSSI(NI#Z. 0 + SIGMALL. N)

TINUE
E=sTTIMEID)
WRITE (&, 2021) TIME
B e L = b e s o o L n n i mk R bbb i

Cc
E
c COMPUTE ELASTIC STIFFNESS MATRIX BASED ON BULK MODULUS
c
c

o

30

AMD SHEAR MODULUS VALUES. C(4.4)
B e e s e s e e e L L e e e s s R R S s b LA s d o2 o n tn b

Cil, 11=EX—{(2. 0eEC/D. 0)+2+ER

=C{1.1)

“E@S3. 0

nNEEn
nrlxnmn

17 v o g R
MR-
Y T

QO0OQOM e | =

']
00880000

)
)
¥
¥
1
)
H
]
1]
)
)
¥
¥
1]

L LIB) = 2 b B D)= LA LI = PILI D

)
1
i
i
{
{
L]
i
i
i
[
{
i
)
[

= omemomeomomomommw oW oA

=2, O=EQ
L SYMINVIC. 4)

[x 131tz lzlslslelalslelnlnlelalsl

>
[ AL L AT AL Ll bl M

58588 SR E SRR R AR AR AR AR FERE AT EERERFR AR R EREERRIREN LA

SOLVE NOM-LIMNEAR STRUCTURE BY SUCCESSIVE APPROXIMATIONS

"H.“lp'l.HH|-|-|al¢'h-inln-tlnil.—l—.—liI.IIHﬂ*il‘M'**"Illllm*’l"l*ii‘l

(slalalalninlalziy]

NSTEP=1

CARDLI

318
217
220
321
azz2
323

224
323

I26
327
28
329
330
331

334

[AIATALATATATR]
L'\UMU'I‘UUS
O un b LAY =
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7933

F314

[5lals]

273

LILIny

FODR

Ialalslslislnlnlnlnly]

321
330

OOoOnOnS ONOonoOn Dan Aoon

& PRESSURE=PRESSURE +#

PRESSURE=0. 0

READ (5. 100817 MAXPRINT

HWRITE(&, 100%) HAXPHRINT

READ (%, 1008) ISOTROP

IF (ISOTROP.EG 1) WRITE (&, 7933)

FORMATL(1X, "THIS 15 AN ISOTROPIC CONSOLIDATIDON TEST®)
IF (ISOTROP.EQ. 2} WRITE (& 7934}

FORMAT{1X, *THIS IS5 A STANDARD TRIAXIAL TEST*)
READ(S, 1008} NCRIT

WRITE(&: 314) MCRIT

FORMAT (1X, "ELEMENT UNMDER SCRUTINY='., 14}
IPRINT=0

DO 300 NNN=1, NP
ISAND=0
IPRINT=IPRINT+1

READ AND PRINT DF PRESSURE BOUNDARY CONDITIONS

READ (5, 1007) HUMPC

IF (NUMPC) 290.310. 290

IF (IPRINT. NE. HAXI'RINTY GO TO 293
WRITE (&. 2014) MSTEP

HRITE (&, 2024) NUMPC

WRITE (&, 2005)

00 300 L=1.NUM™C
READ (5, 1007) IBCL
IF (IPRINT. NE MAXPR
WRITE (&, 2007) 1RCC

JEB
1
JB
b

L 1. PRIL)
NT TD 274
" 1. PRILY

L CiL
I (]
L} CiL
AL

CONT INUE

O CONTINUE

IF (IPRINT NE MAXIRINT) GO TO 321
WRITE(&, 205010 PRESSURE

P e s e e e L s ek s s bt L s st
FOAM STRESS—-STRAINM RFLATIONSHIP FOR EACH ELEMENT
BEY CALLING SUBR SAND 70 COMPUTE THE CLO4. 4, M} MATRIX

ELEMENT #N

MDUMMY (M) HaS5 BEEN INITIALIZIED TO 1 FOR STEP # 1

NDUMHMY (N) VARIABLE INSTRUCTS THE WSE OF THE APFRORIATE
PLASTIC mMODULUS EGUATION
FERSEFEHIHEFEERSFEFELEHA0 AR FE RS R HERBEEEEGEEEEEN RS

DO 330 N=1. NUMEL

CALL SAND

CONTINUE

FORM STIFFNESS MATRIX
CALL STIFF

SOLVYE FOR DISPLACEMENTS
CALL BaNSOL
TIME=TTIMEL(OQ)

WRITE (&.2021) TIME
COMPUTE STRESGES
CALL STRESS

B L L L LR s E s et L L L el
CHECK TO SEE IF VNDSIG IS CORRECT FOR EVERY ELEMENT
IF MNOT, REFORM CL MATRIX USING THE CORRECT WALUE
OF NDUHHMY

B T L s e T L

IF (ICHANGE. EG. 1) &0 TO 321

CARDLI

as7
358

a5
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c

Co & &S00 0 4 a -0 e et e e Pepeaaee e e pr YRR P T SR LSRR S R g

C IF MDUMMIES ARE O. K. ADD INCREMENTAL

c DISPLACEMENTS & PROCEED TO MEXT FPRESSURE IMCREMENT

Censssssapasnprins P e e e I R R L e s s ol bl b ¥
HMPRINT=0

DO 31 N=1.NUMNP ari
DISP(M, 1)=DI9P (N, 11+B(2%N-1) ar2
DISP (M, 2)=D19F (N, 2} +tBIZ4N} 373
IF (IPRINT. NE HAXPRINT) GO TO 31
IF(HPRINT. GT. O} @D TO 32
MPRIMT=73
IF (IPRINT. NE. MAXPRINT) &0 TO 31
WRITE (& 2014) NIIEP
WRITE (&, 2022)
a2 MPRINT=MPRINT-1
WRITE (&, 2004) M.REN), Z{N}. DISPIN, 1), DISP(N. 2}
31 CONTINUE ars
c 384
c MSTEP=NSTEP+1 gg;
1F (IPRINT. GT. MAXPRINT) IPRINT=0
500 CONTINUE a87
c..pan§¥a;|+**-l§ill+|d§i111Ii*iown*liiii}iﬂ*ﬂ*llloi*‘ntiiliiil*i{&ﬂ*lii avo
55
Eilhlfi*ﬁ’ﬂ#*ll*l'lr*#*ll!}lﬁl*lillii*'ﬂ'lI*‘IIi*ﬂ*h*{ililib*"'[illffi} 374
1000 FORMAT (20A4/8110}
1001 FDHHATtIlO-FlO.ﬂ-FID.142F10.Dr3E15.5IEEID.EJ
1002 FORMAT(ILD. 7F10.0) aw7
1003 FORMAT(E110} a8
1004 FORMAT(BF10. O/BF10. O} 399
1005 FORMAT(BFL10. O} |00
100& FORMAT(I10.7F10. O) H01
1007 FORMAT (2I10.F10.0} 402
1008 FOARMATIILO)
1009 FORMAT(1X, ‘PRINTS AFTER’, I10, * STEPS ")
1994 FORMAT(3EH1APPROXTIHMATE FIRST CYCLE LOAD STRESSES) 403
1997 FORMAT (17HIGRAVITY STRESSES) 404
1998 FORMAT (THOEL ND.-IIerHEIER.lll.4HEIGI.7K+EHE]GTHETA.lﬂl.
1 SHTAURLZ/)
195% FORMAT (I7.4F15.2) /D&
2000 FORMAT (1H1 2084/
1 30H0 NUMBER [0OF NODAL POINTS===—"; 110 / 4DE
2 30M0 NUMEER 0OF CLEMENTS —— 110 S a0
3 30HO NUMLBER OF DIFF, MATER IALS=—=—, 110 / 410
4 30HO NUMBER OF LOAD STEPS==—————— . 110/
5 J0HO NUM SPEC BOUND DISP —, 10 S
& 30HO NUM EPEC ELFM MATS————===— 110 }
2001 FORMAT (4FHICLFMENT NO. I o K L MATERIAL ) 415
o002 FORMAT (I12,37F12. 2. 2E24. 4,F12. 2) 41&
2003 FORMAT (1113, 14,1113} |17
2004 FORMAT ( F7HINODAL POINT TYPE R-DRDIMATE Z-DORDINATE R LD 418
1AD OR DISPLACEHRENT 1 LOAD OR DISPLACEMENT 1} /19
200% FORMAT (1HO. * 1 Wf PRESSURE tr
2006 FORMAT C(1X, I12.2F12. 2, IP2E20. 71}
2007 FOOMAT (2156, F12, 4)
2008 FORMAT (23HOPLANE STRESS STRUCTURE J 4248
o009 FORMAT (2&HONODAL FOINT CARD ERROR N=, 13) 423
2012 FORMAT (30HD SaADIUS OF LOADED AREA ————=,F10. 2/ 430
130H0 SURFACE PRESSURE ——=—=—— «F10. 4/
230H0 ATMOSPHERIC FRESSURE==—==--——, F10. 4}
2013 FORMAT H1H14Dla?HELEHENT;51.1HI.5£-1HJ.5:.1HH:5!-1HL-HNr
1 BHMATERIAL/S)
2014 FORMAT (12HISTEP MUMBER . I3} 434
2017 FORMAT (29H0DAND WIDTH EXCEEDS ALLOWABLE {437
2018 FOHRMAT (1HOD. Jla) 438
2019 FORMAT (1HOD, 117, 2116} 439
2020 FORMAT C1HL, 72UNODAL POINTS AND ELEMENTS ) 440
o021 FORMAT (22HOTIME SINCE PEGIMMING=, F10. 3. 2X, 3HSEC ) a41
2022 FORMAT (1HO, 101N, P, NUMBER . 12H R=ORDINATE , 124 I-ORDINATE .

&X, LAHA=-DISPLACEMENT, &%, 1AHZ-D1SPLACEMENT /)
2030 FORMAT (1HO. * MINDR PRINCIPAL BTRESSES ' )
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2031 FORMAT (1HO. * DCTAHEDRAL STRESSES ')
2032 FORMAT (1HO, * FIRST CYCLE STRESSES ARE A FOOTING LOAD")
2033 FORMAT (1HO, * FIRST CYCLE STRESSES ARE FOR PILE LOADING )
2034 FORMAT llHD. 13, * HOUNDARY PRESSURE LOADS AFPLIED'I
2033 FD‘RHHT [{1HO. * NUMHER OF PILES——————— L1104

1 1HO, * DEG ANGLE OF LOAD SPREAD——" -Fi'.'.'r Zf

2 1HO, * ATMOSPHERIC PRESSURE-— “WF10. 4}
2035 FORMAT (1HD, * FILE NUMBER s I104

1 1HO, * FIRST ELEMENT———————a, 110/

2 1HO, " MO. PILE ELEMENTS——=——=",; 110/

3 1HO, ' PILE LDAD '+ F10. 4)
2048 FORMAT (1HO, 3314)
2047 FORMAT (1HO., 14311410

1X: ‘CAV1TY PRESSURE =*,F12. 3}

2050 FORMAT(
C 443
END 443
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(3131

SUBROUTINE STRESS
IMPLICIT REAL®R (A—H. O=T)

EDHHUN!INTGR!MUHNF;HUHEL,NUHHﬁTrNUHFCJNFnIDC{EHI-JBCGEOI-NFLhTE.
i NUMCOL, NUMROM, 1X(%%0, 53, NPP1, NPP2, NPP, MTYPE.: NSTEP. NDURMY {3500, M
1 TCHANGE, MAXPIINT, IPRINT, ISOTRDP, NCRIT

COMMON/PROP/RO(S0), AKD(S50), EE(7). ETL10), MATYP{34)

CDHHDHILDHDICUHE(&GG}-Tt&ODI.TEHP-PH{EDJJACELI-&NGFG-ANGLE{4}
CDHHDNEGEDHKHI&GD!.Iﬂbﬂﬂ?-UH(&UD}.UIﬁ&DG?.RﬁDIETIE&I.ELEV[E#!

1. ROWTHMP (34), DISF (400, 2)

COMMON/STRSS/SIGMA (4. 550), G, PZERD, RZERO, GSTRSS(550).

1 FhTHqﬂIUiESG];AHARE(ﬂEG]-IﬂHAHB[55D1.ETA¢550};51¢DDT!4-550].
1 PHYOM, BRS(550). FETAL{550)

COMMON/BRG/S(10, 10), P(10), TT(4), DD{3, 3), HH{&, 103,

1 RRI41:RRE(4-5501.RHF(#-550].RHT{4|ESU]-IIt#].C[#.!I.CLI#;d.550?-

1 Hié, 10, 006, &), Fi& 100, TPU&), XIL10), LM{4), DADETALSS50],

1 DADIETAL{SSD), DXADETA(DS0), DX DZETALSS0), VN4, 5500, BETA (IS0,

1 UNDEIG!ﬁEQJrIh]ﬂNIE&Gi.DlETA{EEOH.DETﬁtEEU].RﬁHHﬁ:Eﬁﬂ}.

1 2221{5.550})
COMMON /BANARG S BO{11&), A(L1l&, SB) ., MBAND. NUMBLK
E]il.'ll{{i*ﬂq.jillllb**i.i{l{li*ﬂl]piliiil'i.h'i'*lﬂl‘l{'ﬁlI"il‘ll**ﬁ'
1i- (NPLATE.EG O) €0 TO 2
DO 1 N=1.NPPI
IX(N: S)=TABS({I1X(N, 53))
i CORTINUE

C COMPUTE ELEMENT STRESSES
ﬂil{dq..li{ill{ﬂl*q*l*ll*&‘liiilf!lli'#liiillliiil{‘il*Ii‘lflill"l**llf
2 XKE=Q, 0
XPE=0 O
c MPRINT=0
c DO 300 M=NPPI1., MUMEL
M=M
IX(N, Si=IABS(IXIN, 5))
c MTYPE=IX (N, 5)
CaALL GuUAD{VOL}
¢ 1X (N, 51=MTYPE
DO 120 I=1.4
11=2#]
ST XN T
P{II-1)=B{JJ-1}
- 120 P(III=B(JJ)
po 150 I=mi. 2
RELI =P I+B8)
D 150 K=1.8
c 150 RR{I)=RAR(I)-G(I+0H, KI=P{K)
COMM=5{9, )#5(10, 10)=-5{F, 10)=5(10. 7)
IF (COMM) 133, 14600139
155 P(Fi=(5(10, 10} =AR{1I-S(9, 10)#RR (2} ) /COMM
c P{10)=(=5(10, 71 eHH(1)+5(F: FI*RR (2} ) FCONM
140 DO 170 I=l.6
TP{1)=0 0
Do 170 K=1, 10
P 170 TPUI)=TP({I)+HH{1, K)*P(K)
c
171 RR{1}=TP(2)
RRL2)=TPI&)
RR(II=(TR(1}1+TP(PI1eRARR {3, N)+TP(31e2TZ{5. N} } /RRR (3, N}

RR{G)=TPL(3)1+TP(5)
Eli&il—il{llill—lmlql (S FTTEESEERE R E2 ] FEESEERARERGREERE RSB RRER
C CHANDE SIGNS OF STHAIN MATRIX SO THAT COMPRESSION IS +VE
C RRTII.N} IS TOTAL STHAINM MATRIX TO BE WUSED LATER DN OUT

CARDLI
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C OF THIS LOOP

ﬂ|*||1||44.h;'|1.|*§a|1'4;1.Ill*|*I+IIIfliI*‘li*&*“i!ilil‘lllllll!‘ii

Do 175 I=1.4

RRT(I. N)=—RR(1)

IF (I.EG. 4) ART{I.M)==RR{1}/2.0
175 RR(I)=—-RAR(I)

c
E*'-jh**“*{‘q'{l'l*CIﬂiii"'{’lfifl'I*'qIIill"lll*lf‘l'f‘*ﬂ'***"‘.
C
E CALCULATE INCREMENTAL STRESSES DUE TO STRAINS
DO 5 Kei, 4
3 SICDOT(K.N}=0.0
Do & I=1.4
DO & Kwl, 4
c & SICDOT(I, NI=SI@DOTC(I, MI+CLIYI. K. M)®#RR(K)
C RESET STRESSES TO GRAVITY STRESSES AT END OF FIRST CYCLE ONLY
Cc THIS IS5 WNOT USED AT PREGE by 00
C IF (NSTEP.GT. 1) CO TO 7
c SIGMALZ: NI=GETRES (N}
C SICMALI: NI=AKD(HTYPE ) *GSTRSS(N)
E SICHALL, N)=AKD(MI YPE) #@STRSS (NI
Cc
CHERSHAAEFA4SISH S S0 RS F ARSIt SEl RNt int it dNaResinianidssEiadns
c COMPUTE WECTOM N : VECTOR SIGDOT. THIS INDICATES
c WHETHER WE HAVE A VIRGIN LOADING, UNLOADING OR
Cc RELOADING COMDITION
c THIS VARIABLE IS CALLED VNDSIQI{N}) FOR ELEMENT #M
c.|¢q.1u+1i1§'i|Q|qqtpq*‘&{{.4;*;;;1-iili.&Iiiiiil***i!!*i*iﬁb
C
7 CONTINUE
VHDSIQINI=SIGROT (I, N)#YNI1, N)+SIGDOT(2, NI #VNIZ, N)+SIGDOTI3. N =
VNS, N)+S5IGDUT (4, Nye2. OsVNI&, N)
C
Eq**l*'|1111--1§i}'l{|§11|1-q.i'lli*lilil*ili*liltiildllillli
¢ COMPUTE THE EXFPECTED WALUE OF NDUMMY (N} & STORE IN
C A VARIABLE [SIGN(M)
C# 48 805450 85 8 8 842 4 & 554 5050 1S5 R RS R R
c
IF (VNDSIGI(M), B7.0.0 . AND. BETAI(NM) GT.1.0) ISIGN(N)I=Q
IF (VNDSIGIM). 27.0.0 . AND, BETA(N).EQ. 1.0) ISIGNINI=]1
& IF (VNDSIG(M). LT.D.0 .AND. BETA(N).GE. 1.0) ISIGN(N}=—-1
- 300 CONTINUE
cq'|‘1§j+i'|q|q¢¢|n"ili**{**{f{l;‘{iiilililiIiiillllliidi#&l
c TEST TO SEE I THF ASSUMED VALUE OF MDUMMY (M) IS
c ACTUALLY EGUAL TO ISIGNINI. IF MNOT. SET NDUMMY(N)
c EQGuUal TO ISIGMNINY, ALSO. SET ICHANGE EGUAL TO 1
c TO INSTRUCT MROGRAM TO RE-COMPUTE THE CL HATRIX
Cc HWITH THE CORRECT SIGH OF NDUMMY{N)
Cj"{.+q‘.l’..‘.‘}n}f|l{'!}d|i’*ilI""".lf"‘fl’."*""**‘
ICHAMNGE = O
C

DO 656 I= 1, NUMEL
IF (HDUMAY (D) NE. ISIGH(I)) ICHANGE =]
IF (NDUMMY(I) .NE. ISIGN(I}) NDUMHY(I}=ISIGN(I)

454 CONTINUE
c*'fifqgnuii.qd|l{q'e."+lli*llilIlllilflfl*i*!ﬁl'l‘l‘.iiiiil
C THIS RETURNS SUBR STRESS TO THE MAIN PROGRAM FOR
C RECOMPUTATION IF MDUMMY(M) DOES NOT HAVE THE PROPER VALUE
C||'.|'¢§{+|li|||}lquiilqidi!tl{i!lIiitiiﬂl'tiidii*i*iilflﬁi

c
IF (ICHANGE. EG 1) GO TO 320

RSP RN SRR SRS NS ARSI RIS NP ORI AR I ISR IO RaROnInntns
C IF ALL THE NDUMMY(N) VALUES WERE CORRECT.
c THE PROGRAM

CARDLI

307

509
=10

514

223
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Cc CONTINUES MOTMALLY TO COMPUTE THE FOLLOWING:

c A. UPDATED STHESSES

c B UPDATED HARDLNLE IMG PARAMETERS

c C. PRINCIPAL STHFSSES

c 22 RS R EE R E R L B S 8 & ot b b awd S SR E SR L 2 S 2 5 = & F J

G ADD STRESS INCREMENTS TO PREVIOUS STRESSES

E NOTE : SIGDO1(1.M) 1S MNOW ADDED TO SIGMA(I.N)

DO 91 Jmi. NUMEL

DO 21 I=1.4

SICMALL, JI=SIGMALL, JI+SIGDOTII. J)
F1 CONTINUE

C
c
c|.¢.§§i4§§+qqd-iiui'fif'iqiu}*iafiipdulilflillliﬁflii+li||ﬂ*ﬁiiilillf
C COMPUTE INCREMENIAL ELASTIC STRAINS RRE(I}
C|||||q'p*idil+.|p--ti1fli|4|fiii*lil+l{lﬂllillllliiiiii*l*!ll’l#i*it*
c

DO 11 J = 1, NUHEL

DO 11 I = 1.1

11 HHE{IJJ1=CII.1!!SIGDHT1lndi*ct1.2}hSIGDUTIE.Jj+CII-3}fEIQDDT!3aJ1+

c S$C(I, 4)wSIGDOT (4. J}

Cilflii*i!*il*l{ﬂilllliiiI{il’d*iIillIllIIiII‘III"'I"!I‘I{Ill{l’ﬂ'ﬁl
¢ COMPUTE IMCREMENIAL FLASTIC STRAINSE RRP(I)
c*qflilIlli+|fitiib*i;ii*-14lifliﬂinpl*i*l*b*iihiiﬂilllll*l*l*lll*ii{l
C
DO 13 J=1. NUMEL
Do 13 I=1.4
13 RRP(I, J)=RRT{1, JY-RRE(I.J)

c
+|1pd-iililililiI!IIllIl#iiiiltli!D!-dﬁliliiil!h#dlllfliiiiid*ﬂiii*l

C COMPUTE DIETA, I.E. CHANGE IN PLASTIC WOLUMETRIC STRAIN

ﬂfp.tli{ii{qliill|}|llliidii!i{;ioi*lilil!ihiii*llll!ll!ii&liIi!llltli

C
DO 141 I=1,NUMEL
DFETALIY = RIF(1.I) + ARP(2,1) + RAF(Z, 1)
141 ZETALI) = ZETA{I) + DIETALIL}

CHENBEER RN A RSN SFSF SRS SE SRR AONtREiiisnisianutiniannmonshandnsn
€ COMPUTE FICITIOUS INCREMENMTAL PLASTIC EQUIVALENT SHEAR STRAIMN. DETAL
ci‘*{"']—'* sRETERS '“l‘*lﬂ‘""ll!hl".“““III"‘I*“'.IH—I"I’I‘""H*'I LR R L 2 3
C

DO 25 I=1. NUMEL

XX = (DIETA(T1ca2)/3. 0

YY = RRP(1. I)eftRP(1, I} + RRP(2. I)#ARP{2. 1) + RRP(3, 11#RRP(3: 1}
¥Y = ¥Y + 2 O0cRiP (4, I)*RAP(4, 1)

DETA(I) = DEGRTO(YY=XX)#0. 3)

h‘iil!!*'liIQII{}1PGI{IilfiIlf"*bl‘i'lfl‘lﬂ'lli*“lilIIG**I"IH*II*I
UPDATE FICTITIOUS PLASTIC EGUIVALENT SHEAR STRAIN. ETA FOR EACH ELEMENT

ETALI) = ETA(I} + DETA(I}

0O Ononn

EII*flf“f‘!"i‘i‘*i+ll‘ﬂlli'lliiiiiii'I'*lfl*lfl{l*"'llll'lll'iiilll

€ UPDATE HARDEMEING FANAMETERS AHARDIN} % IAHARDIN) FOR ELEMENT N
C*¢§|quqqqii{|{'¢4';q-.*{{1.;}ifqui&.4}{ijiihp‘-bliliiilfliiIlllilili

IF (ATHETA. GT. BM) GO TO 191
AHARD(I) = AHARDII) + DADETA(I)#DETA(I) + DADIETA(I)#*DIETACI)
XAHARDCI ) = PHYUOMsAHARDIL)®#PATH

@D TD B8
191 XAHARD(I) = XAAUDCOTY +DXADETA( T }#DETAL 1 ) +DXADZETACL ) #DIETACL)
AHARD(I) = XAUARDCI JsRIO=(EXPL1. O)—1. O} /PATH/EXP (1. D)

c
CIGIiifdiillilll!l.iiII*{IIiI!Fﬂ*"*ii'!'1'**!""*'!I*l"llililiii“'l'
C DOUTPUT STRESGES
Ci{.ll*liliifioiil}lalq&llilliliiiiillllliiiwiq*-i|ll0llfi*d*i*lllpliiqt

CARDLI

224

533
534

537
338
539
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E CALCULATE PRINMCIFAL STRESSES g:?
BE CC=(SIGMA{1, 1) rSTEMA(Z, [1)/2.0 784
BO=(SIGHMA(L, I -SlGMA(Z2, I1)}/2. 0 783
CR=DESGRTISICHMA(A, 1 1«SIGMAC4. 1 1+BE=88B) 784
S1¢3=CC-CR 787
SiG1=CC+CR Je8
IF{516MALS. 13, GE. 3103 €0 TO 10
SIc2=51G3
S5163=S5IGMA{3. 1)
G0 TO 15
10 IF4SIGHMALS, I}, LE. 3IG1) &0 TO 12
B1G2=51I&1
SIGI=SIGHALZ. 1)
e0 TO 13
12 SIG2=5IGMA(3. 1)
15 SICT=(SIGI+5IC2+5IR3) /3. 0
c 551
c 553
IF {(MPRINT) 105, 105,110
105 IF (IPRINT. NE. HAXPRINT) GO TD 25
WRITE (&, 2014) WN3ITEP 555
WRITE {(&,2001) E57
MPRIMNT=40 358
110 HFH‘IN’T=HPRINT-—’ a5
WRITE(&, 2002 T HRU(S, 1), 22245, 1). SIGMA(L. 1), SIGMAC2, 1),
1 SIGHMALS,: I). SIEMAL4, I), SICL,. SIG2, SIGI
SIGRD=SIGMAC]L: I} -AKDIMTYPE ) #ESTRSS(I)
SIGI0=SIGMA{, 1) -G5TRES(I])
SIGTD=SIGMAL(Z,: 1) -AKD(HTYPE) iGSTHSE{ I
WRITE (& 2005) S1GRD: SIGID: aTD
23 CONTINUE
c 571
C TIME=TTIME({D) 573
C WRITE (&.2021) TIME 574
C 372
e 320 RETURN g;z
2000 FORMAT (48HOFIHST LINE WITH GRAVITY., SECOND LINE WITHOUT ) 77

2001 FORMAT C(1HO.: 'EIFH* T9: "R*. Tlé: “27,T21: ‘SICGR", T27: "SIGL".
iTB#,'510T'.T4].’1nURZ',T45; ‘SI@l’, T35. ‘SIe27,
$TA&D, 'SIG3" /)
EDGE FURHnT{IRJIE. 2F7. 2, 1PE10. 3: 1PE1D. 3, 1P4EL1D. 3, 1P4E1D. 3,
FPF&, 1, OPF&, 24 1X, OFF&. 3}
=003 FDHMAT{IH ] a2

2005 FORMAT (34X. IPSEIDQ. 30
2014 FORMAT (12H1ISTEF MUMBER , 13) 583
c?ﬂ!l FORMAT (2ZHOTIME SINCE BEGINMNING=, F10. 3.2X, 3HSEC } gg;

END S86
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SUBROUTINE STIFF

IMPLICIT REAL=0 (A=-H.0-1}
CUHHUNIINTGH{NUHNP.NUHEL,NUHHAT;NUHFC:NF-IHC(EGIrJBC{EUIJNFLATE;
1 MUMCOL, NUMRLW, 15{550, 5), NPP1, NPPZ2. NPP, MTYPE. NSTEP. NDUMIMY (5503 . N,
1 ICHAMGE. MAXFHINT, IPRINT, ISOTROP, NCRIT
COMMON/PROP /RO(S0), ARO(S0), EE(7), ETL10). MATYP(34)
COMMON/LDAD/COREL(SHO0), TI&DD), TEMP, PR(20)., ACELZ, ANGFG, ANGLE(4)
COMMON/GEOM /T L6000, Z(&00), URTADDY, UZ(400) ., RADIST(253), ELEVI34)
1, ROWTME {34 ), DTGP {&00. 2

]
]
COMMON/STRSS/SIGMAL4, 5500, G, PZERD, RZERD, GSTRSS(2301,
1 PATH, AIOC(SS00, AHARDLS55Q) SAHARD{ S50}, ETA(520), SIGDOT (4, 550},
1 PHYOM, BRS(550), IFTALS5D)
COMMON/ARG/S(10, 103, PL10), TT(4), DD(3, 30, HH{&. 100,
1 RR(&}, RRE(&: 550), RRP {4, 990) . RRT (4, 550). IZ7(4).C(4, 4), CL(4, 4, 5501,
1 Hi&, 101, Dl 61 Flbo, 10}, TPLL), X1(10).LM(4), DADETALSS0),
1 DADIET&tﬁ!QJ:DXAUETAIEEﬂ}-DIADIETH(E&B#:UN{4.HED];DEThiﬂﬁﬂ].
; ggg?;ﬂégg?l.IEIRNiEﬂD!-DIETnfﬁﬁOI-DETﬂ(ﬁﬁGl.ﬂHRIE;&EGI.

COMMON /BANARGY BUL11&), All14, 58), MBAND, NUMBLK

c
CHEHEE BRSNS BN SRt OaED It il R IeRReRastissitisssnssnsionsadnsstnss
c INITIALIZATION
CANENE T ersnNd i AR N4 0 S FT B HRNNFSEEOHFHHEEASSSA SIS RRINERRRELRS
REWIND 2
M=
ND=2#NE
ND2=Z#ND
STOP=0, O
MNUMDLK=0

DO 50 M=1,ND
50 ACH. Mi=0, 0
cplw1+§*1.di4i4*§|*p-p-qi|5|i§¢q*.qdiliIlif!!ﬁI!ii'***lfli‘ilil'*lillll&
c FORM STIFFNESS MATRIX IN BLOCKS
c'{{*.**‘4{']{}{****{['}}'1*ﬂidil*il*}‘II'ﬂ*&iililiflf'b.'ﬂ*l*l'l‘i‘i'*'
&0 MUMBLK=NUMBLH+]
MH=HE* { NUMBLK+1 )
MH=nNH—-NB
MNL=NM—NO+1
KSHIFT=2eNL-2

OO 210 N=1. NUMEL

IF (IXEM.3)) 210,210, &3
&3 DO 80 I=1.4

IF (IXCN, I)-NL)} G0, 70. 70
70 IF (IX(N, I)=MM} 0.0, 80
B0 CONTINUE

G0 TO =10

S0 CALL GUAD(VOLY

IF(VOL)Y 142,142,144
142 WRITE (&6, 2003) N
STOP=1.0
144 IFCIXIN, 2)=-IXIN, 47} 145 145,143
145 DO 150 II=1.%
CCuS(11., 10075010 101
P{IT}=P{II)-—CCEPLIO]
DO 150 JJ=1.9
150 SCIL,JJI=S{IL, JJ)--CCRS(10: JJD

po 140 II=1.8
CC=SUII, FIAE0T.F)
PCITI=PEII)=CC#F(7)
DO 140 JJ=1.08
160 SO11,JJ)=S{I1. JJ)~-CORS{T. JJ)

&08

oo o0
i s e e ot e 0
M0 U0 B LI AY = DD

&19
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E ADD ELEMENT STIFFNESS TO TOTAL STIFFMNESS ggé
165 DO 144 I=l. 4 £33
166 LM(II=281X(N, I}-2 &54
c &55
po 200 I=1.4 -%1-1
DO 200 Ks=l.2 &£57
T1I=LM{ I 1+K-—KSHIFT &58
KH=28]—2+K &59
B{IT)=B(II}+PL{HK) &40
DO 200 J=1.4 651
poO 200 L=1,2 &5
dd=LH(J]+L-I]r]-KEHIFT &63
LL=2®J=2+L b&d
IF(JJ)} 200, 200. 175 &65
17% IF(ND=JJ} 180, 195, 1932 f=1-1
1B0 WRITE (&, 20041 M [-1-Y)
STOP=1.0 &68
O TO 210 549
195 ACII, JJ)=ALII, JJ)+S{KK.LL] &70
200 CONTINUE 671
¢ 210 CONTINUE g‘;g
E ADD CONCENTRATED FORCES WITHIM BLOCK g;g
DO 250 N=NL, NM &75
KE2#h=HEHIFT &77
BIK)I=H{K}+UTII(NY &78
250 BiK=1)=B({K=1)+UR(N) 579
c &80
C BOUNDARY CONDITIONS &B81
c &82
C 1. PRESSURE B. C. &B3
= =E
IF (MUMPC) 240, 310,250 &85
250 DO 300 Lwl, NUMFC LB 4
I=IBC{L) &87
JeJBC LY &BB
PP=PRI{L)} /5. &ET
DFe{Z(I)=2{(J} )PP &F0
DR=(R{JI-R{I}}=PP &71
RYX=2, O#R{I}+R{J) e
Tx=R{IV+2, OsHiJS} 693
1F (NPP)} 252, 744,262 &594
262 RX=3.0 &HFD
1%=3.0 -l
264 I1=2eI-KEHIFT &97
= 2eJ=KEHIFT &98
1IF (II) 280,200,765 &77
263 IF (II-ND} 270, 270, 280 700
270 SINA=D O TO1
A=1, O 702
IF (CODE(I)) o7, 272,272 703
271 SIMA=DSINICODE (I /S7. 32 704
CDEthCﬂSICDDE{I}IET.BI 705
272 B(I11-1 TeO(IT—11+HX#{COSA=DI+SINARDR) 7058
EIIIJ=BtIII-ﬂ:ifﬂ]NAiUZ—CDEAIDRI 707
ap0 IF (JJ3} 300,300, 705 708
285 IF (JJ=ND! 290, 290, 300 707
290 SIMNA=0. O 710
cOsa=1._10 711
IF L(CODE(J)) 271, 25, 292 712
271 51NA=D5!H:EDDbIJI!57.ﬂI 713
COSA=DCOS(CODE (J) /27, 30 Ti4
292 B(JJ—I)-Bth-!:+2xlcCDEAtDI+5[NAfﬂRI T15
Biugdl=B{JJi—ZXe{SINASDZ-COSADRY 7146
300 CONTINUE 717
c 718
T . ERLGOREMEMT UG %%g

c
310 DO 400 M=NL. N
IF (M—NUMNE) 315, 315 400

=}
A
| FE
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1 onn

xlals]

315 U=UR (M)

N=2aM=1=-KSHIFT

IF (CODE(M)) 370,400,314
314 IF (CODE¢MI=1.) 117, 370.317
3217 IF (CODE(MI=2.) 318, 390,318
318 IF (CODPE(M)-3. )} 390, 380, 370

370 EAL# MODIFY (A, O, MU2, HEAND. N, U}

QO Ta 400
380 CaLL HODIFY(A. D, ND2. HDAND, M. U}
370 U=UZIiM)

N=N+1

CALL MODIFY(A. U, ND2. MBAND. M, U}
400 CONTINUE

184

SYSTEM SUPPORT UTILITIES

WRITE BLOCK OF CGUATIONS ON TAPE AND SHIFT UP LOWER BLOCK

WRITE (2) (BIM}, (AN M), M=1, MBAND ). N=1. NDJ
DO 420 M=1.ND

K=N+MND

BIN}=B{K}

BiKI =0 0

DO 420 M=1,MD
AN Hi=A(K: M}
420 A{K.HI=0, 0

CHECH FOR LAST HLOCHK

IF (NM=NUMMP) &S0, 480, 480
480 CONTINUE

C# &2 eedFadsssidiietsssasspisdisisd i tiisissnsy AT

IF(STOP) a490. 500,470
490 CALL EXIT
500 RETURN

c
2003 FORMAT (2&HONEGATIVE AREA ELEMENT NO. . 141}
2004 EHEHRT (2FHOOAND WIDTH EXCEEDS ALLOWARLE. T4)

CARDLI
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CHetenap ittt asdRaaBnriseasisliansdid st dtsn i taadntadnuandaadnssessdnsssssss

SUBROUTINE GUADOVOL)

CHs Pt sassaissssIasdifissalianiiidtdiadadianandnanensnsasiasnenauidnsaee

IMPLICIT REAL#H (A-H.O=71}

COMMONS TNTGR /MNUMNI, MUMEL, NUMMAT, NUMPC., NP, TBC(20), JBC(20), NPLATE.,

1 NURCOL: NUMROW,.: IX (350, 51, NPP 1. NPP2: NPP, HTYPE, NSTEP: NDUMMY {550, N.

1 TCHAMGE.: MAXFRINT, IPRINT. ISOTROP. NCRIT

COMMON/PROP/RO{S0) . AKO(S0), EE(T ). ET{10), MATYP(34)

COMMON/LOAD/CODEL SO0 ), T{H00), TEMP, PR{Z0), ACELZ, ANGF G, ANGLE (4)
&00), UR(600), UZ (600), RADIST(25), ELEV{34)

COMMON/GEOM/ARLOH00) . 4

1. ROWTHP (34 ), BI1SP(H00. 2)

COMMON/STRES/SIGMALS, 550), Q. PIERD. RIERD. GSTRSS(550) .

1 PATH: AICCS50), AUARDISS0 ), XAHARD(S550). ETAL{SS0), SIGDOT(4, 550,

1 PHYOM. BRS{350), IFTAL{D50)
COMMON/ARG/S(10, 10}, PL10). TTC(A4). DD{3. 3). HH{A, 10},

1 RA(4), ARE{4, 5500, RRP {4, 330). RAT(4, 3530), ZZ(4). C(A4. 4}, CL(4, 4. 5501,
1 HiG: 103, DG A F (& 10), TPIA): XI(10), LM(4), DADETA(SS0).

1 DADZETALDG0), DXADETACDE0), DXADIETA(SS50), VN4, 350), DETA(S50),

1 VNDSIGI(S30), ISICN(S50), DIETA(SS0), DETA(SS0), RAA{ 5, 5501,

COMMON SBANARGY BO11&6),AlLLlG, S58): MBAND, NUMBLK
{:H; 5‘?'?;’:;'*'?' S EE RS ESRFA A E RS RS HEHF A AR AR R SR A OA RREASEEE
L i 1
JETXCN, 23
K=IX(N: 3)
L=1Xi{N.: &)
HMTIYPE=TXI{N, 5}
IXIM, S)=—TIX (M. 5]}
ba s sl s s st s sl ot it sa st et el s e sty R e e e R Y

FORM STRESS-STRAIN RELATIONSHIP

I:EFE%HHSIEII FOR EACH ELEMENT HAS BEEM FORMED PREVIOUWSLY
B L s B L R B 1 0 B R I I NI I TV g g ——

THE MATRIX IS5 INVERTED IN SUBROUTINE SYHINV
B e N ettt et L e T L L L T r e ——"

FORM GUADRILATERAL STIFFMESS MATRIX

RRR{S: NM)=(R{(1)+*R{JI+RIKI+RI{L)}) /4.0
ZTZ(Ts NY={ZAL)vZOJI+ZLRI+ZIL)) /4.0
Do 54 M=1, 4
MM=IX{N: M)
IF(R{MM) ) 23,%1.93
F1 RIMAY=0, Q1#RRR(S: N}
IFCCODE(HM) ) %3, 92, 93
52 CODE(MHMIw], O
g3 RRR(M. N)=R{MM)
B4 FITI{M. NI=Z(MM)
CReSUEBIBIBISINSRIEH3HIHaaad s ntt st astEas it e s i eassossneesirses
0D0 96 II=1,10
P{IT )= Q
DO 95 JJ=1, &
5 HH[JJ;II} =0, U
oo Jd=1,
& SEIInJJ!UG a
DO 119 Il=1,4
JJ=IITN II}

119 ANGLE(II)=CODE(JJ) /57, 3
C****Ilifiiliiiﬂi!*lillil*#lIil{ill*liiiifl*iilﬁilfilihpipq.iﬂiliiliiill
(=L} 1235 120, 123

120 CHLL TRISTF{1.2: 3)
RARHK(S: N)={HRRI{]. N)+RARR {2, N)
IZICS N)=(ZTZ(L. M)+ZIZ(2iN)+
YOL=XI{1)}

¢0 TO 130
1253 vOL=0.0

Lalzlalalalslalnlalalslslalyl

+RRR /3.0
4 & 1/3.0

(A A

(3. N}
(3. MY

CARDLI

Thl
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CALL TRISTF(4. 1,3} B&&
YOL=yOL+XI(1} 8&7
CALL TRISTF(1.2:5) B48
VOL=VOL+XI(1) B&T
CALL TRISTFiZ: 3. 5} 870
VOL=VOL+XI(1) B71
CALL TRISTF(3: 4. 3) B72
VOL=VOL+XI{1) 873

Casssssdsisdedsrdiss 'TEEIE LT L& HHﬂlHiii*lHq*ﬂlH.ili—H—!“illﬂid L 2 2 3
DO 140 II=L.& 873
DO 140 JJ=1.10 B7S

140 HH(II-J.JIBI-M'.'lIrdJl'flf.O 877

Cas st iarttisnteinina SRS SRS A ARSI RERE e e R RS s b b

130 RETURN are

Cadess e s s R s i bk s FAE T R S R LE L &
END eg1
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g8
SUBROUTIME TRISTF(I1, JuJi KK) gg’g

IMPLICIT REAL®R [A-H. 0=}
COMMOMN /S INTGR /NUMNE, RUMEL . HUMMAT. NUMPC, NP, IBC(20), JAC{20) . NPLATE,
1 NUMCOL, NUMROW. 1X(350, 5), NEP 1, NFP2, NP, HMTYPE, NSTER, NDUMHY (5500, M.
1 ICHANGE, MARPRINT. IPR INT. ISOTROP, NCRIT
COMMON/PROP SR 5004 AKD(S0), EE(T)}.ETL10), HATYP{34)
COMMOM/LDAD/CODE 14007, TU&00), TEMP, PR{20D) . ACELZ, AMGBFG, ANGLE(4}
COMMON/ GEDM/R L8000, Z1600), URL&001. UIC&00], RADIST (=251, ELEVL34)
1, ROWTHP (341, DISP LAD0, 2]

COMMOM/STRES/S1GMA LS, 5503, @ PEERD. RIERD, GSTRSS(2300,
1 PATH, ATO(S501, AHARD (3507, AAHARD(S30}, ETALSS0}), S1GDOT (4. 350),
1 PHYOM, BKS(320), TrETALDS0})
COMMON/ARG/S1 10, IDIthlﬁl-TFHH.DD{E-G?-HH'I&; 107,
1 RR(4)}, AREL 4. L0), RARP (4, 5501, RRT (4, 550), ZZ(4).CLA 4, cLi4, 4. 5500,
1 Hid, 100, Di& &Y F L&, IDLTF"(ﬁ}.IIIIDI;LH(#]-DP-DET.IHEEI-DL
1 DADZETA(I30). DXADETALSS0) . DXADZIETALSO0), VN4, 350), DETAL 3500,
!i ﬂgﬂtéﬂ;gg?h 181GNI5S0), DIETAL350), DETA(S50), RRR(S. 5507,
c COMMON /BANARG/S BlL1&), AlLls, 5B, MBAND. MUMBLK a95
c 1. INITIALIZATION 874
c ae7
LM(1i=II 898
LHt2i=JJ 897
LHI{I)=KK g0
c 701
RR(1)=RRR{IL. N} 7
RR (2 }=RAR { JJ: M} 9
AR{J1=RRAR {KK. N} 9
RA(GI=ARAL{IL. N} 9
ZZ(1y=ZLI(I1.M) 9
ZZ{21=ZLL(JJ,s M} 9
FZ13 =TI (KK, N 9
ZZCA)sTITO01. NI 9
c F10
g% DO 100 I=1.4 11
po 90 J=1,10 712
F(l.J)=0.0 213
g0 H(l,J1=0 0 14
DO 100 J=1. & 915
100 DI1.J)=D. 0 &
c 17
E 3. FORH INTEGRALIGIT=(CI®I(E) g%g
c CALL INTER{XI.RR.7I} 33?
D(2, &)=XI(11e(CLLL, 2. N)+CL(2, 3. N} )
Dtﬂ-5}==HIH.'II-CI._¢4J4,N]+III4I*C (3. 4, M)
DS, 5)=¥IilleCL (4, 4 N}
Dt&:blﬂlt(l]ltLl’.F.E-N)
106 Di1.11=XI{3)=CL (3 3. M)
D1, SymyIi2ietCl (1, 3, NI+CL (3, A NY D
D1, 3y=XI(31rCL {Hpﬂ.N}*'KliEIIELlGr#aN}
Dil,&=xI{2)eCL {7 3. M)
D(E-E}PKIELH{CLl'l.-l-ﬂ'."h?. osCLC1, 3, MY+CLED, 3. MDD
Et%ﬂﬂ;-;ﬂd?ﬂ}llcl.(la:'_I-NI'I-CL.‘.'EI-. F, N XTI 0L e{CLLL. 4, NY+
3 o Ha
DL'LHJ'HIIlb?-‘CLIEJB;NH'KIH.}*CI...{M A, N}+XIta)=(CL(4, 3, N}
s+CL (3. 4, M)
¢ Di3, &)=XI(4reCLI2 3y MI+XI(1)eCL(4, 2, N} 954
108 DO 110 I=1.& 35
Do 110 J=l:. & 735
110 DiJs T3=D0(L.J) 937
Dtl-ﬁ)-lI{EJfCLlﬂ.ﬁrN}
DtE-5!-11[1}EFCL{I14-N1+CL{3;4. LR
D{3, 11=xI{S)eCL {3, 3, M} +KI(2)eCL (4, 3. N}
DEQ.E)BKIH-]HCLI:L1.H1+CL13.3-NH#HIH'.lll'EL'H-.hH]
s+CL (4, 3. H) )
D(5. 1)=XI(2)#CL (4, 3. N}
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[z1z1s]

xlyly]

[2lzly]

Iglalsl

120

122

124
125

128
130

e
bt

150

140

Z2ITE:

4, 3, N
JeCL (4, 4. N}

J4CLC2, 8. N)

ey

YA M ARY
R a3

- e

{
1
1

[=]=lwl-l=]
+

??UUU
Wiy
Y e 2t
REdpY
e e
e e B
FIf) sl
A

it

-

4. FORM COEFF ENT=-

C

-
=]

ISPLACEMENT TRANSFORMATION HATRIX
Z(2)=ZZCAVI+RRIIIS(IZ(L1)=22(2))
SCOMM

ﬁEDHH

=

-
i |
1
=

dhhe
Ny

L el
1333

= LN A e LI B = L 2
4

58
T 0 B g P Pl P e
B Tl
T . |
Attt Rt Tt

e

M T

L
+
o
-

ROTATE UNKNOWNS 1F REGUIRED

Do 125 J=1, 2
I=LM{J}

IF (ANGLECIN) 122,125,125
SINA=DSIN(ANCLE (]
COSA=DCOS (ANGLE (]
1J=Ce]

DO 124 H=1.,&
TEM=H{K: IJ=11}
HiK, IJ=11=TEMEOOSA+HIK, [J)#STINA
HiH, IJ)= —TEMRSIMA+H(K, IJ}#COSA
CONTINUE

=%, FORM ELEMENT STIFFMESS MATRIX (H)T=(D)=(H}

Do 130 J=1.10

DO 130 K=1.56

IF (H{K,J1) 123,130,128

Do 129 I=1.4
Fil.Ji=F(I,J)+D{L. K)sH{K. ]}
CONTINUE

1343, 140, 138

F
O 13% J
i YHHOK, TYeF (K. J)}

(el L=l

FORM THCRMAL LOAD MATRIX

M=RO{HMTYPE ) sANGFGee2
y=COMM=X1LY/)
J=COHMeXT(7)
}=-HD:HTYFEJIAEELI
]

=]

y=COMM=X1(06)

a0 I=1.10
&0 Kml, &
=P{Ii+HIK, 1 }=TP LK)

TOE —H-H-—H4=0
~00 TITTUTU

1
2
a
]
=
&
1
1
)

CARDLI
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C
C FORM STRAIN 1HAMSH-ORMATION MATRIX
400 DO 410 I=1.4
DO 410 J=1, 10
410 HHOL, JY=HH(L, JYEHLTL: J)
RETURN
END

188
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CARDLI
1005
1004
1007
1008
1007
1010
1011
1012
1013
1014
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c
¢ BUBROUTINE MODIFY (A, B, NEQ. MBAND: N:. U}
IMPLICIT REAL®O (A-H.O-2)
" DIMENSION AC1l&, 538). Bl114)
DO 230 H=2, HBAND
KeEN=M+1
IF(KY 235, 235, 230
230 BIRI=BIKI-ALK. M} =U
Atk Mi=0. 0
235 K=N+M-1
IF(NEQ-K) 250,210, 2490
240 BIKI=BIKI=AIN: M)elU
AlN, HI=0, 0
250 CONTINUE
HBiN}=U
e RETURN
END

190
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NERDC

13

1983 15:

OCTOBER 28,

SUBROUTINE IMTER(XI:RR.II)
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OCTOBER 28.

0O 60 0 0

100

110

120

150

200

1983 15:13

SUBROUTINE SYMINVIA, NMAX)

IMPLICIT REAL#DO {(A-H,D0-T)
DIMENSION Al4,4)

DO 200 MN=1, NMAX
D=A{N: M)

DO 100 J=i, NMHAK
ALMN JY==A(N: J} /D

DO 150 I=1, NMAK
IF(M=-1) 110, 150,110
DO 140 J=1., NMAX
IFE{N—J) 120, 140, 120
AT JI=ACT, JI+ATT NI ®ATN, J)
CONT INUE

AL NI=ACI. M) /D
A{N.NI=1 O/D

CONT INUE

RETURN

END

NERDC

192
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SUBROUTINE BANSOL

1MPLICIT REAL®B (A—H. O-1)
COMMON /BANARGY BU(11&), AC114, 580, MM, MUMBLK

MH=58

ML =MNN+1

NH=MN+NN
REWIND 1

REWIND 2
MH=0

G0 7O 1350

CiIiIili#willi*illrliliiliiill‘lli{il{i*hill’l{!l!bi*i*i{l*il*ti*lllli*ﬂ

Cc REDUCE EQGUATIOMS HY BLOCKS
Cddil}}*‘h‘{lilaﬂdciilollr**iiiilllii*lilil}bﬁqfﬂ*Iilc!ifiiilililliflibl

1. SHIFT BLOCK OF EGUATIDONS

100 ME=NE+1
DO 125 N=1, NN

[slaly]

ALK MI=ATN M)
123 Al
2. READ NEXT BLOCK OF EGUATIONS INTO CORE

IF (MUMBLK-NH)} 150, 2C0. 150
150 HEAD (21 (HIM), (AN, M), M=1. MM NSNL, NHD
1F (MB) 200,100,200

3. REDUCE BLOCK OF EGUATIONS

200 DO 300 M=l NN

IF (AlN,11) =25, 300, 223
225 BINI=B(N) /AN 1)

Do 27% L=2. MM

IF (afN. L)) 230,273, 230
230 C=adh, LIFAIN, 1)

I=N+L=1

J=0

DO 250 K=L. MM

d=J+1
250 ACI.Ji=aA(I, J)-CEAN K]
J=BLIi—=AlNM LI®B(N)

(wlzls]

[nlaly]

4. WRITE BLOCK OF REDUCED EQUATIONS ON TAFE 2

IF (NUMBLK-NB)} 375, 400,375
ars EEI¥E iéé (BINY. (AN M), M=2, HM). N=1. NN)
[of 2 2 2 2 B B A o kR b FHEFEFFH S ERTSE RS FEFEFEASSE DR ER RN A A E R A Re
= BACK=SUBSTITUTION
T e e ittt £ a Sl bbb bbbl
400 DO 450 M=1. NN

[alele]

N=MN+1-M
DO 425 We2, MM
L=M+K—1

8425 BiM)=B{MN)—ACN, K)#HIL)
NM=N+NN

BiMMI=B{N)
450 A(NM NOB)=BI(N}
ME=Nl~]
IF (NO} 475,500,473
&75 BACKSPACE 1
READ (1) (BIN), (ALN, M}, M=2, M), N=1, NN}

CARDLI

e et
e
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BACKSPACE 1

1178

@O0 TO 400 1179
[:"“'I*'H*'*I.l'.‘*Hl‘l*'*'*'l‘-‘-‘.'l"'.‘“mm"""l‘""*"’""""‘""l‘" 1180
C ORDER UNKNOWNS IN B ARRAY 1181
CHEtssmEnasiatn gt ren sl e e it i s it au s iins s a s st osenssinadeanasiesy 1182
500 K=0 1183
00 &00 NE=1. MUMHLK 1184

DO &00 MN=1.HNN 11485
NHM=N+NN 1185

H=K+1 1187

&00 BIK)IsAINM, NB) 1188
1187

RETURN 1190

Cc 1171
END 1192
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SUBROUTINE SAND

a0 ann

IMPLICIT REAL®[D (A-H.DO-I)

EXTERMAL FF., FDETA. FRETAL

COMMON/ TNTGR /MUMNE, NUMEL, NUMMAT, NUMPC, NP, TBC(20), JEC (20}, NPLATE.
1 NUHCDL-NUHRUHpIltﬂﬁﬂ.51;HPPIrNPFR.NPF;HTTPE-NETEF:NDUHHT(ESD!-H.
1 _ITCHAMNGE. MAXFRIMT, IPRINT. ISOTROP, NCRIT
COMMONSPARMSER, EX, XR., X5, XT, XU, XW. XD, BN, R10. GAMMA, HBU, HEL
COMMON JBLKI/ 51, S, OMEGA. AP, RI0O1. ALPHA, BH1, XA, GAMMAL
COMMON/STRSS/SIGMALS, 5500, G, PZERD, RZERD, GSTRES (5501,
FATH, AIO(S550), AHARD( S50}, XAHARD {350}, ETA(S50). SIGDDT(4, 3503,

1
1 _PHYOM: BRS(S50), FETAL{LS0)
COMMON/ARG/S{10. 100, P{10). TT(4), DD(3. 3), HH(&. 107,
1 RR{4), RRE(4, 550), RRP (4, 350), RRT(4, 5301, 2744}, C{4 4}, CL{4, 4, 3507,
1 Hi&, 10}, Dt b)), Fi&, 10}, TPIA), X1010), LHM(4), DADETALS550),
1 DADIETAL S50 XADETALSS0), DXADZETA(SSO), YNG4, 5501, BETAL 350),
i g?g?!ﬂégg?].IEIGNISED};DZETAIE&Ui.DETAIEEGJ.RRHIS;5501.
o
DIMENSION SS(4), Vr4)
DATA ZEROQ. HALI-, ON[-. TWO, THHEE, FOUR. FIVE, S1%, HUNDRED

$ /0. EQ. . 5EO0. 1. EQ. 2. ECV 3. EQ, 4. ED, 0. ED, &, EO, 100. EQ/

CRONTORITRE S SN SRS SRR SRR EE R 0NN DO
C RENAME BOME SOIL PARAMETERS FOR COMMON/BELKIS
o e e P gy

RIDI=RIOD
BHNI1=0HMN
CAMMA L =CAMMA
c KA = XAHARDIM)
c"*"f|“‘|4b‘ﬂillll!iflilf.ipdl‘||{{1{§{'{l[}{{|{{liIﬁ‘ﬁ.b‘]'
c
c COMPUTE STRESS IMVARIANTS [1 & ROOT J2
C S = 11 & SJ) w7
c SIGC = NORMALIZING PRESSURE
c SET SICC EQUAL TO THE INITIAL VALUE OF 11
c SIGC1 IS FOR TIE LO% SURFACE
C 6§5(1) = DEVIATORIC COMPONENTS
c
SI=SIGHMACL. NI+SIGMALZ. N} +SIGMALT, N)
DO 3 1=1,3
3 55(I) = SIGMA(]1.N) - SI/THREE
S5i(4) = SIGMALS. N)
S5J = tE{EIGHﬁEI.NihEIGHAiE-N?1442+EEICNA!2+HI-EIQHAEE-Hll
SR8+ (SIGMALL, M) -GIGMACI, N) }ee2) /8 0)+(SIGHASG, NI ) #e2
SJKY =DSGRT{SJ)
SIGC = SIGMA(. N)
BIcCi= SIGC
5G2=DSART({ THREE}
IF (N EG NCRIT)} PRINT #, ‘ROOT J=’, SJKY. ‘SI=', 51, ‘NSTEP=*, NSTEF
IF (NSTEP.EG. 1} ETAINI= XREDSGRTI(SJ)/{SICC-XS=DSGRT(5J} )
IF INSTEP. EG. 1) ZETA(NImXWe(1-EXP(=X#5T))
IF (M. EQ. NCRIT) PRINT ®, "ETA=", ETA(N)
- IF (M. EG. NCRIT) PRINT #, "IETA=", TETAIMN)
c
€
c COMPUTE HARDEMING FUMCTIONS: QU(ETA) AND HIETA)
E AND THEIR DERIVATIVES: DHDETA AND DGDETA.
L

AUX=XR+X5#ETAIM)
G=ETAIN)/AUX

50.) = DSART(SJ}
DEDETA =XR/{AUXeALX)
AUX=XT+XU=ETAIM)
ALPHA=ETA(N) rAUX

CARDLI
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islalslslninls] (xlalglslely]

= 0NN

glelslslale

23435

BEES

HHH=DT AN ALPHAY
DHOETA=(XT/ (AUX#AUX) ) /{DCOS{ALPHA)=DCOS(ALPHA) )

COMPUTE FUNCTIOMS: THETA(ETA) AND OMEGA(ETA)
AND THEIR DERIVATIVES: DTTDETA AND DOMDETA.

EXPMO=EXP (DNE) / (EXP (ONE }—ONE)

PHYDOM=EXPMO/RIDO

ATHETA=DSGRT (5.1 /51

IF (M. EG. MCRIT) PHRINT =, "ATHETA=', ATHETA., ‘NSTEP=‘, NSTEP
THETA=SAI+THRLI: F &

OMEGA=DONE / ( THIREE =1 HH )

DT TOETA==THRIEE#DELETA/R/G

DOMDETA=—0OMECA®DHUETA/HHH

COMPUTE A=A(LTA. ZETA) AND B=B{(ETA. IETA) INITIALLY

=G =DSART (SJ)
IF{NSTEP. ME. 1) @O TO 12345

b=EN

CALL SOLVE (7.FF)
AHARDINI=Z/FPATH

XAHARD (N )I=PHYDM®AMARD (N ) #PATH
XA=XAHARD(N)

COMPUTE DADETACN) AND DADIETA(N]

AP=AHARD(N}#PATH
IF (NSTEP. EQ. 1}

]
BRAJI“DNE—EGEﬂHHE' SJJItEI—AIGEN

{ : :
(ISOTROP.EG. 2} ERAJI=IERO
(ARAJI. LT. ZEHO0) BRAJI=ZERO

(ATHETA, GT. BN} &GO TO BEA8E
DSJ=(RIO-0ONE } /BN

AXKP= SIGC#(SUInG+THREE)

EXKP= SE3+(AXKP-AR/RIO)N

CYXKF= Q#SIGCEDFDSJ-DF DI

DFDETATX = =1H0O#SIGC*DEDETA® (BEXHP+CXKP)
QERT=THETA=G=I3]1GC/AP—ONE/RID

DEHJ=DF DSJeeq

DFTX=DSGRT( 12, O#AP=*ARAGERT#OERT+TWO#DEHJHGeGRSIGCESIGC)
DFDATX=—THO*THETA+G#5SIGC/RIOFPATH+ (TWO=-RIO) /R IO#FATH#PATH
S*THOEAHARDIM)

DADETA(MI= DFNETATX/DFDATX

DADIETA(MN)= HHAJI/((XD*PATH)I & {XW-ZETA(NI )

&0 TO 78635

BHNEX=BN» (EXP ((IMNE ) -OME)
DXADZETAINI=(PHYDOM2BRAJI ) A ( (XW=IETAIN] ) #XD}
YLOGAL=0NE+DL 06 (ONE-THETA#GeSIGC 1/ XAHARDIN] )
DFTX1=DSGRT(HALF F1HREE®DBNE X+ DNEX#YLOGA1 #YLOGAL)

CXIR=DLOG (OMNE-THE JARGESTIGCT S XAHARDIN) )
CFDXATX=BNEX# {CYX 1P+ THETA®R#SIQC L/ NAHARDI(N) )

ODFDETATX = SIGC*DGDETA={DNEX=YLOGAL=533-1)

DEADETA(NI= DFBETATE/DFDXATX

&0 TOD 7777

CARDLI
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E COMPUTE BETA: TNVARIANTS OF THE IMAGE-STRESS TENSOR: Al AND AJdi

G VECTOR WM. NORNMAL TO BOUNDIMG SURFACE. ANMD ITS HMODULUS DF.

=

T&5 IFCATHETA BT _RN) @0 TQ 7777
CE%L{E?L%E (2. FRETA)
BETA o
IF (IPRINT MNE MAXFRIMT) GO TO 10&
WRITE(&: 100} BETA(MN) . NSTEP: NDURMY (M) . N
100 FORMATI* BETAIM) =, F10,. 3, “NSTEP =*, I3, ‘NDUMMY (N} =*, 13
$: "ELEMENT #', 111}
104 IF(BETA(N) LT.OMF) DETAIUN)I=DNE
IF{NSTEP, EG. 1) HETAINI=1. 0
Al=BETA (] %51 —THHEE#CAMMA® (BETA (N)=ONE)
AJ=BETAIN)}#BFTA{N)*5J
POGR=AT] /AP—ON- /IO
RTY={RIO-ONE} /DN
HST=RTY#84
DF=DSGRT( 12 0sAPsAP#PORePEGR+TWO#WST#AJ)
Do 5 1=1,3
5 WML, MI=(THO®ANM sPOGR+RTYSRTYSBETAIMNI#S5(1) ) /DF
VNI, N)=RTY#RTY=BETA(N)#S5(4) /DF
no 55 I=1.4
55 VRO I=UN{L: N} )
IF(BETA(N) E0. ONE ) GO0 TD 213
EES%=DEGRT§IF_OfﬁPIHF'FGR*F@R*THQ'HETIEJ?
b I=1.
5& VHIT)=({ TWOrARPePOR+RTY#*RTY#55(1) ) /DFSJ
YHMIA)=RTY®RTYRSS(4) FDFSJ
&0 TD 213
T777 CALL SOLVE (I.FBETAL)
BETA(N)=( XAHAND(M)=THREE«GAMMA~T ) / {ST-THREE®#GAMMA )
WRITE(&, 1OD) BETACM) NSTEP: NDUMMY (N} N
HRITE{&. 127) 3
127 FORMAT(1X, "BETA AROVE IS FOR LOG SURFACE’)
IF(BETA(NY LT. OME) BETA(N)=0ONE
Al=RETA(N) #5] -THHEFE#GAMMA® (HETA (NI =ONE)
AJ=PETA(NI®BETA(NI®S]
DX 12=0ONE+DLOC {UNE AT S XAHARDINY )
DF1=0SGRT (HALF +THREE+*BNEX=BNEX+DX12eDX12)
Cla3=—BNEX#DX 12
O 710 I=1,3
710 WNOI, NI=(C123+BETA(L
WM&, NI=HETAIN} =S5
Do 711 I=1.4
711 WHOL)=WNIL. N}

1#55(1)/THO/DSGRT{AJ) ) /DFL
1/TWO/DEGRT (AJ)Y FDF 1

COMPUTE DFDETA AND DFDIETA

[alalglglglnlyly]

213 CONTINUE
IF(ATHETA, GT. BN) GO TO bb&bHb
DFDﬂs-THD'AI*PﬁTH!RID+!THD—HID}IHIanATHlPATHITHDIﬁHnRD{N!
FDETA=DFDA=DADNETAIND
23 = (RIO-ONE}/JRIOD
24 = DLOG! DME - (ZETAIM)FAXH))
25 = XDeXDe(XW-7ETAIN))
DZETA = HRAJI#THOSG123=G124/0123
DFDZETA = DADZETA(N}=DFDA
€0 TO ahs
&bhss DFDXA=BNEI={DLOG{ONE-AL /XAHARD(N) J+AL/XAHARD (N} )
DFEETA1=DFDXA®LXADETAIN)
DFDIETAl=DFDXA#DXADZETAIN)
IF(ATHETA. GT. HN) DFDETA=DOFDETAIL
IF(ATHETA. GT. I'N) LFDICTA=DFDIETAL
IF(ATHETA, GT. UN) LF=DF1

%EEEE

an



198

OCTOBER 28. 1983 15:13 MERDC — SYSTEM SUPPORT UTILITIES —-- CARDLI

(xlzlalsl

xlelplalglelyl

[3Tlalnlslslzlals]

G596

17

1

COMPUTE BOUNDING PLASTIC MODULUS BKS

CONT INUE

THYN=VRE L, M) fN 2 M) +YNTE N

TARAVH=VEL L I+VHMLIZ) sYMO3)

5123=DFDETA#DSERT (HALF-ONE/SIX#TRVH®TRVM)
BHP=—5123/DF-NFDIETA#TRYH/DF

IF (NDUMMY(N).EQ. 1) BAS(MN)I=BKP

IF (NDUMMY(N). EG. —-1. AND. BETAIN). EG. 0) BDRAS{N) = 100#EG
IF (NDUMMY (M) EG. -1 AND. BETA(N]. EG. 0) 60 TO 917

IF (MDUMMYIN). EG. —1) BRSIN)I=HEUSBETAIN)/(BETA{N)-ONE)
1F (MDUMMY(N}. EG. 0} BRSU(N)=BHP+HEL#{ONE-ONE/EETAIN))

1.
1.

THE VARIABLE PHY 15 GOING TO BE USED TO COMPUTE THE CL MATRIX
COMPUTE PHY

FL=EW-EG#TWO/THREE

YNEVN=ZERO

DO 51 1=1.3
YNEVN=UNEVN+VYNI T, MY sUNII, N}
YNEWVH=YHNEVN+THU#YNIS, NI#VNIS, N)
YNEWVHN=VHNEVNSTUD & G+EL*TRVN®TRYVN
PHY=—0OME /S { BRS(N ) »VNEVN)

COMPUTE CONSTITUTIVE LAW

AU I sTHOEG#FHY

AUXZ2=EL = TRVNEDITY
‘ELil.1.M:=EL+1unfEc+:tnuxllUN[1.N:+ﬁU!2JltELlTHUN+THUIEG*UN[1

14

CLEI, 2, NI=EL+({{AUX1#VN{2, N} +AUKZ ) # (ELeTRYN+THO*EG#VNC1, MY ) )
CLI1.3,N}FEL+ltﬁuxliVNtanNJ+AU:E}itELlTﬂUN+THDﬂEG»UH{1.M!i}
CLCL, 3, NI=AUXLEVMIA, NI # {(ELE*TRVN+THO®EQ#VNIL, M) }

CL(2, 1. NY=EL+{ (FL#TRVN+TWOSEGSVNI2, N) 1 # (AUXI#VNT 1, NI+AUXZ) )
CLIZ 2  NI=EL+THOEEG+{ (EL*TRVN+TWOREGEVNIDZ, M) ) » (AUX 1 #VN {2, NI +AUXZ) )
CLIE.3.NI!EL#{:FLGTEVN*THU*EGlUM:Z.N!14(ﬁUHIGUN(3:MJ+ﬁUIE])
CLCZ, 4. NI=AUXT VN4, N} # (EL#TRVN+TWOSEG#VNIZ, N} )
CLIE.1.HJ*EL+¢{ELITRVN+THD!EGGVNE3rNIIltﬂuxilVN{I.H:+AUIEII
CL{D, 2, Ni=EL +{ (CL o TRVH+THOSECSWVHID, NI 1S (AUXL#VNO2. NY+ALK2 ) )
CLIS, 3. NI=EL +THIREG+{ (EL=#TRVN+THOSEGEVN (3, N ) = (AUX1#VNI3, N)+AUXZ) )
CL(T, 4, N)=AUX1sUN{A, NI #(ELSTRVN+THO#EG#YNLI, M)}

CLCa, 1, NI=TWOeLCeVNI4, NI #{AUXLIaVNIL, N)+ALXZ)

CL{A, 2, MIsTWO#ERZ#WNL A, NI #(AUXTaVNIZ, NI +ALKZ)

CLES, 3, NM)=TWOEFGSYNIA, Mo (AUXIaVNIT, N} +AUX2)

CL{4, 4, NI=EG+{q._ QeEGSECaVNI4, NYSVN(4, N)#PHY )

RETURN

END
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(elalslalnls]

FUNCTION FF(X)

IMPLICIT REAL®3 {(A—H, 0-Z)

COMMON /BLK3/ S1, SJ, OMEGA, AP, RIO1, ALPHA, BN1. XA, CAMMAL
HER=(RIO1-1. 0} /TiMNL

FErSIeSI+WERBHEN#5SU-2. O#SI#X/RIN1+ (2. O~-RID1) /RIODI#X8X
?‘ETWN

THD
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[glalely)

TP IETY REALaS A, O=7)
ML L] -
COMMON /0LRI/ 51,5, OMEGA. AP. R1I01, ALPHA, ON1. XA, GAMMAL
ATX=(RIO1=-1 0} /HMI1
E e
- " ”
FHE:Q:ETL*GTI*Glx*ﬂTI*K'x“EJ“E O#@TIaAP /MI01+GTY®=AP AP
RE TURN
EM
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(slalalalsl

FUNCTION FRBETALIX)

IMPLICIT REAL®H (A=H.0-1)

COMMON FBLK3S 51, 5. OMEGA, AP, RIO1, ALPHA, BN1. XA, GAMMAL
CVE=EXP(1,0)-1.0

CYB1={Xa~3. O#QAMHAL=-X) /{S]1-3. O=0aAMMAL)

;ﬁméztvﬂ 1#DSHRT(SJI+BN1#CVBe X+ (DLOGIX )—-DLOG (XA )

END
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alslalslse]

SUBROUTINE SOLVELT. FUNC)

IMPLICIT REAL®=3 (fA=H.O—~I)

EXTERNAL FUNC

EDTHEE {ELHE! S1. 54, OMEGA, AP. RIOL, ALPHA, BN1. XA, GAMMAL

B=1.0

110 FInFUNC(A)
Ful=-=FUMNC (B)
IF{Fl=FJ. LE. 0. 0) &0 TO 111
A=[i
H=D+1. 0
GO TO 110

111 TOL=1. OE-10

I=FEROIMLA. B: FUNC, TOL)
RETURM
EMD
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xlalnlnln]

SUBROUTINE SOLVE (7. FUNC)
IMPLICIT REAL®3 (A-H, 0-2)
EXTERNAL FUNC
EBTHSE {gLF‘J! 51, 5J. DMESA. AP, RID1, ALPHA. BN1. XA, GAMMAL
B=1,0
110 Fl=FUNC{A)
FuuFUNC (B )
IF(FI=FJ. LE. O. Q) &0 TO 111
A=H

H=g+1.0Q
e0 TO 110

111 TOL=1, OE-10
I=ZEROIMCA, B, FUNC, TOL )
RETURMN

END
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xlylslslnBNalslalsinlalnlnlslsinlnlstalatisinlnizinizlisigislalalalslsislslyizis] [xlals]

3131

[xlal3!

10

=20

20
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DOUBLE PRECISION FUNCTIEN ZEROIN(AX, BX, FF, TOL}
IMPLICIT REAt =3 (A-H.0
COMMON /BLK3/ SI.EJ.DHEGA-AF RIOL, ALPHA, DML, X4, CAMMA ]

A IERO OF THE FUNCTION FF(X) IS COMPUTED IN THE INTERVAL AX, BX

AX LEFT ENDFOINT OF IMITIAL INTERVAL

BX RIGHT EMDPOINT OF IMITIAL INTERVAL

FF FUNCTION SUHPROGRAM WHICH EVALUATES FF{X) FOR ANY X IM
THE INTERVAL AKX, DX

TOL DESIRED LEMETH OF THE INTERV&L OF UNCERTAINTY OF THE
FINAL RESULT (., GE.

OUTPUT

IEHDIN ADCISEA APPROXIMATING A IERD OF FF IN THE INTERWVAL
IT IS ASSUMED THAT FF{AX) AND FF(BX) HAVE OPPOSITE SIGNS

HWITHOUT A CHFCK., JERDIN RETURMS A IERD X IN THE GIVENM
AX, BY TO WITHIN A TOLERANCE 4#MACHEPS#ABS{X)+TOL. WHERE
MACHEPS 15 1HE RELATIVE MACHINE PRECISION

THIS FUMCTIOM SUBPROGRAM IS A SLIGHTLY MODIFIED TRANSLATION OF

CARI

THE ALGUL &0 PROCEDURE ZERD GIVEM IN RICHARD BRENT. ALGOLRITHMS FOR

§ZﬂTIDN WITHOUT DERIVATIVE « PRENTICE—HALL. INC.

DOUBLE PRECISIOM #A. B. C. D. E. EPS, FA, FB. FC, TOL1, XM, P. G, R: 5
COMPUTE EPS, THE RELATIVE MACHINE PRECISION

EPS=1

EF%FEPS!Z

TOLI=]1. O+EPS
IF(TOLL. GT. 1.0} &0 TO 10

INITIALIZATION

AmA X
B=EX
FA=FF{A)
FR=FF(B)

BEGIN STEFP

Cea
FC=FA
D=E-A

E=0
AEEHHEIFCJ GE. ABS(FB)) GO TO 40

B=C
c=A
FA=FB
FB=FC
FC=F#a
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E CONVERGENCE TEST

c

c

c

lzlals BN plnly] xlaly]

[xlalalyly]

xlxly]

3lsls]

inlels]

213131

izlalslslyl

=0

70

80

TDLI-E.DGEFEFABStBl+ﬂ,54TﬂL
XM=0, Sa({C=0)
IFtABS(XM). LE, TOLL)} €O TO 70
IF(FB.EQ. 0.0) €0 10 50O

IS BISECTION NECESSARY

IF(ABS(E}.LT. T(0L1) &OTO 70
IF(ABSIFA). LE. ABS(FE)) GO TQ 7O

IS GUADRATIC INTERPOLATION POSSIELE
IF(A. NE.C) GO TO 50
LINEAR INTERPOLATION

S=FB/FA
P=g Os)Mas
a=1, 0=

1. 5
&0 TO &0
INVERSE QUADAATIC INTERPOLATION
O=FA/FC
R=FD/FC
S=FB/FA
FﬂSiIE.DlXHiﬂllG-Hl‘{B-Rl'(H‘l.0??
G=(0=1. 0})#(R-1.0)8{5~1, 0}
ADJUST SICNS

IFIP. GT. 0. 0) @-—0
PeAOS(P )}

IS INTERPOLATION ACCEPTABLE

IFf(E.DlFI.GE.tﬂ.ulxﬁiﬂhﬂBBITﬂLIiﬂiJI Q0 TO 7O
éFﬁP.GE.ﬁBEIG.blEiﬁll &0 TO70

D=P/s0a
&0 TD B0

DISECTION

D=XM
E=f)

COMPLETE STEP

DY, @T. TOL.L ) B=R+D
D} LE. TOL1) BeB+SIGN{TOLI, XM}
5

¥
éFC(RE (FC121.8T. 0.0} G0 TO =0

ZEROTN=H
RETURN
END

CA
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